Abstract

We report surface-plasmon-polariton-induced suppressed transmission through two-dimensional arrays of isolated metal disks with a thickness comparable to optical skin depth of the metal. A transmittance dip of 17.5dB is achieved at the resonant wavelength of 1524nm, compared to 12dB for closed film. Coupling the light into the surface-plasmon polariton results in enhanced absorption, which is potentially interesting in solar cell applications.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films

Myeong-Woo Kim, Teun-Teun Kim, Jae-Eun Kim, and Hae Yong Park
Opt. Express 17(15) 12315-12322 (2009)

Extraordinary optical transmission through hole arrays in optically thin metal films

Sergio G. Rodrigo, L. Martín-Moreno, A. Yu. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal
Opt. Lett. 34(1) 4-6 (2009)

Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films

Shih-Hui Chang, Stephen K. Gray, and George C. Schatz
Opt. Express 13(8) 3150-3165 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription