Abstract

We developed a hybrid analog/digital lightwave neuromorphic processing device that effectively performs signal feature recognition. The approach, which mimics the neurons in a crayfish responsible for the escape response mechanism, provides a fast and accurate reaction to its inputs. The analog processing portion of the device uses the integration characteristic of an electro-absorption modulator, while the digital processing portion employ optical thresholding in a highly Ge-doped nonlinear loop mirror. The device can be configured to respond to different sets of input patterns by simply varying the weights and delays of the inputs. We experimentally demonstrated the use of the proposed lightwave neuromorphic signal processing device for recognizing specific input patterns.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Koch and H. Li, Vision Chips: Implementing Vision Algorithms With Analog VLSI Circuits (IEEE Computer Science Press, 1994).
  2. M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, IEEE Signal. Process. Mag. 27, 158 (2010).
  3. D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, Opt. Express 17, 22767 (2009).
    [CrossRef]
  4. P. J. Simmons and D. Young, Nerve Cells and Animal Behaviour (Cambridge U. Press, 1999).
  5. N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).
  6. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, Opt. Express 15, 13114 (2007).
    [CrossRef] [PubMed]
  7. M. P. Fok and C. Shu, J. Lightwave Technol. 27, 2953(2009).
    [CrossRef]

2010 (1)

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, IEEE Signal. Process. Mag. 27, 158 (2010).

2009 (2)

2007 (1)

1998 (1)

N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).

Bubnov, M. M.

Edagawa, N.

N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).

Fok, M. P.

Koch, C.

C. Koch and H. Li, Vision Chips: Implementing Vision Algorithms With Analog VLSI Circuits (IEEE Computer Science Press, 1994).

Kravtsov, K.

Li, H.

C. Koch and H. Li, Vision Chips: Implementing Vision Algorithms With Analog VLSI Circuits (IEEE Computer Science Press, 1994).

Prucnal, P. R.

Rosenbluth, D.

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, IEEE Signal. Process. Mag. 27, 158 (2010).

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, Opt. Express 17, 22767 (2009).
[CrossRef]

Shu, C.

Simmons, P. J.

P. J. Simmons and D. Young, Nerve Cells and Animal Behaviour (Cambridge U. Press, 1999).

Suzuki, M.

N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).

Yamamoto, S.

N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).

Young, D.

P. J. Simmons and D. Young, Nerve Cells and Animal Behaviour (Cambridge U. Press, 1999).

IEEE Signal. Process. Mag. (1)

M. P. Fok, D. Rosenbluth, K. Kravtsov, and P. R. Prucnal, IEEE Signal. Process. Mag. 27, 158 (2010).

IEICE Transactions on Electronics (1)

N. Edagawa, M. Suzuki, and S. Yamamoto, IEICE Transactions on Electronics E81-C, 1251 (1998).

J. Lightwave Technol. (1)

Opt. Express (2)

Other (2)

P. J. Simmons and D. Young, Nerve Cells and Animal Behaviour (Cambridge U. Press, 1999).

C. Koch and H. Li, Vision Chips: Implementing Vision Algorithms With Analog VLSI Circuits (IEEE Computer Science Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of the crayfish tail-flip escape response. R, receptors; SI, sensory inputs; LG, lateral giant. (b) Schematic illustration of the optical implementation of the escape response. w, weight; t, delay; EAM, electro-absorption modulator; TH, optical thresholder. Inset, measured recovery temporal profile of cross-absorption modulation in EAM.

Fig. 2
Fig. 2

(a) Input to EAM. (b) Output sam pling pulses of EAM. Insets, superimposed output temporal profiles.

Fig. 3
Fig. 3

Experimental (solid squares) and simulation (open triangles) results of the optical thresholder transfer function.

Fig. 4
Fig. 4

Schematic illustration of configuring the pattern recognition. (i)–(iv) First integrator and thresholder. (v)–(vii) Setting 1, detection of a b c and a b -. (viii)–(x) Setting 2, detection of a b c only. (xi)–(xiii) Setting 3, exceed integration window—no input is detected.

Fig. 5
Fig. 5

Experimental results. (a) Optical inputs to EAM 1; (b) different spike patterns resulted from the first integrator; (c) thresholded output; (d) output spikes from EAM 2, recognizing pattern a b c and a b -; (e) output spike from EAM 2, recognizing pattern a b c only; (f) output from EAM 2, none of the input is recognized.

Metrics