Abstract

We report on the generation of femtosecond pulses at 160nm with energies up to 240nJ at 1kHz repetition rate and sub-50-fs pulse duration. This pulse energy is a 1-order-of-magnitude improvement compared with previous sub-100-fs sources in this wavelength range. The pulses are generated by four-wave difference-frequency mixing process between the fundamental of a Ti:sapphire laser and its third harmonic in argon. Pulse duration measurements are achieved by pump–probe ionization of Xe gas providing the cross correlation between the fifth harmonic and the fundamental.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
    [CrossRef]
  2. K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
    [CrossRef] [PubMed]
  3. S. A. Trushin, W. E. Schmid, and W. Fuß, Chem. Phys. Lett. 468, 9 (2008).
    [CrossRef]
  4. V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
    [CrossRef]
  5. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, J. Opt. Soc. Am. B 21, 370 (2004).
    [CrossRef]
  6. V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X. Wang, R. Komatsu, and V. Alex, Opt. Lett. 29, 373 (2004).
    [CrossRef] [PubMed]
  7. M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
    [CrossRef]
  8. S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
    [CrossRef]
  9. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  10. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
    [CrossRef] [PubMed]
  11. P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, Opt. Express 15, 6389 (2007).
    [CrossRef] [PubMed]
  12. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  13. T. Fuji, T. Horio, and T. Suzuki, Opt. Lett. 32, 2481 (2007).
    [CrossRef] [PubMed]
  14. K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
    [CrossRef] [PubMed]
  15. G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
    [CrossRef]
  16. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, Appl. Opt. 47, 4856 (2008).
    [CrossRef] [PubMed]

2008

2007

2006

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

2004

2001

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

2000

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

1999

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

1995

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

1975

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
[CrossRef]

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Alex, V.

Babushkin, I.

Backus, S.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Bartels, R.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Becker, A.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Bjorklund, G. C.

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
[CrossRef]

Börzsönyi, A.

Chen, C.

Chin, S. L.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Durfee, C. G.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Farmanara, P.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Freyer, W.

Fuji, T.

Fuss, W.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
[CrossRef] [PubMed]

Fuß, W.

S. A. Trushin, W. E. Schmid, and W. Fuß, Chem. Phys. Lett. 468, 9 (2008).
[CrossRef]

K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
[CrossRef] [PubMed]

Heiner, Z.

Herrmann, J.

Hertel, I. V.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Horio, T.

Husakou, A.

Kalashnikov, M. P.

Kanai, T.

Kanda, T.

Kapteyn, H. C.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Kittelmann, O.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Komatsu, R.

V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X. Wang, R. Komatsu, and V. Alex, Opt. Lett. 29, 373 (2004).
[CrossRef] [PubMed]

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Korn, G.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Kosma, K.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
[CrossRef] [PubMed]

K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
[CrossRef] [PubMed]

Kovács, A. P.

Le Blanc, S. P.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Liu, W.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Mero, M.

Misoguti, L.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Noack, F.

Osvay, K.

Pan, F.

Petrov, V.

V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X. Wang, R. Komatsu, and V. Alex, Opt. Lett. 29, 373 (2004).
[CrossRef] [PubMed]

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Qi, Z.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Radloff, W.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Ringling, J.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Sauerbrey, R.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Schmid, W. E.

K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
[CrossRef] [PubMed]

S. A. Trushin, W. E. Schmid, and W. Fuß, Chem. Phys. Lett. 468, 9 (2008).
[CrossRef]

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
[CrossRef] [PubMed]

Sekikawa, T.

Shen, D.

Shen, G.

Steinkellner, O.

P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, Opt. Express 15, 6389 (2007).
[CrossRef] [PubMed]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Stert, V.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Suzuki, T.

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Togashi, T.

Trushin, S. A.

S. A. Trushin, W. E. Schmid, and W. Fuß, Chem. Phys. Lett. 468, 9 (2008).
[CrossRef]

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
[CrossRef] [PubMed]

K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
[CrossRef] [PubMed]

Tzankov, P.

Wang, J.

Wang, X.

Watanabe, S.

Wick, M. T.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Wittmann, M.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Xu, Z.

Zhang, C.

Zheng, J.

Appl. Opt.

Appl. Phys. B

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Chem. Phys. Lett.

S. A. Trushin, W. E. Schmid, and W. Fuß, Chem. Phys. Lett. 468, 9 (2008).
[CrossRef]

IEEE J. Quantum Electron.

G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008).
[CrossRef] [PubMed]

Opt. Commun.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

Other

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for VUV generation by FWM. BS1, beam splitter ( R 2 % ); BS2, beam splitter ( R = 66 % ); DL1, delay line for FF-TH temporal overlap; DL2, delay line for pulse duration measurement; L1, lens for FF ( f = 100 cm ); CP, calcite compensation plate; HWP, half-wave plate; L2, lens for TH ( f = 50 cm ); M1, VUV collimation mirror ( r = 150 cm ); M2, VUV focusing mirror ( r = 100 cm ); M3, flat mirror for collinear combination with probe beam; SM, VUV spectrometer; M4, movable mirror for coupling into SM; W, Mg F 2 window; TOF, time-of-flight mass spectrometer; PM, VUV power meter (Startech Instruments).

Fig. 2
Fig. 2

Typical spectrum of the VUV generated by FWM (black squares). The FWHM of a Gaussian fit is 1.12 nm (solid curve), corresponding to a transform-limited pulse duration of 34 fs when Gaussian pulses are assumed.

Fig. 3
Fig. 3

Measured VUV energy depending on the argon pressure (black squares) and the theoretical curve simulated by using our experimental values (solid curve). The optimum VUV energy is obtained at a pressure of 28 mbar .

Fig. 4
Fig. 4

Cross-correlation trace of fundamental and VUV pulse (black squares) in Xe with the Gaussian fit (solid curve) of 49 fs (FWHM).

Metrics