Abstract

An all-optical generation of a microwave carrier at 21GHz that incorporates a double-Brillouin frequency shifter is presented. The frequency shift of 21GHz is achieved by generating the second-order Brillouin Stokes signal from the Brillouin pump. This is accomplished through the circulation and isolation of its first-order Stokes signal in the optical fiber. The Brillouin pump signal is heterodyned with its second-order Brillouin Stokes signal at a high-speed photodetector, and the output beating frequency is equal to the offset between these two signals. The generated microwave carrier is measured at 21.3968GHz, and the carrier phase noise as low as 58.67dBcHz is achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
    [CrossRef]
  2. X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
    [CrossRef]
  3. T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
    [CrossRef]
  4. G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
    [CrossRef]
  5. A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
    [CrossRef]
  6. X. Bao, Q. Yu, and L. Chen, Opt. Lett. 29, 1342 (2004).
    [CrossRef] [PubMed]
  7. J. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]

2009 (1)

2008 (1)

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

2006 (2)

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
[CrossRef]

2004 (1)

1998 (2)

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
[CrossRef]

Bao, X.

Chen, L.

Chen, X.

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Chi, H.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Fotiadi, A. A.

Gliese, U.

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Hannover, D.

Jin, X. F.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

Junker, M.

Kiyan, R. V.

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Norskov, S.

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Schneider, T.

Shen, G. F.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

Yao, J.

J. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Yu, Q.

Zhang, X. M.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, IEEE Trans. Microwave Theory Tech. 46, 458 (1998).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (2)

Prog. Electromagn. Res. (1)

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, Prog. Electromagn. Res. 80, 307 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the generation of a 21 GHz microwave carrier utilizing a double-Brillouin frequency shifter.

Fig. 2
Fig. 2

Growth of the first- and second-order Brillouin Stokes signals in a 5 km SMF at different input Brillouin pump powers.

Fig. 3
Fig. 3

(a) Optical spectrum measured at the output port when the input BP power is 15 mW and (b) its generated rf spectrum at the photodetector.

Fig. 4
Fig. 4

Frequency and power stability of generated rf carrier, which are scanned every 10 min.

Fig. 5
Fig. 5

Generated rf carrier power and phase noise with variations in power level between BP and BS2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t ) = E 01 cos ( ω 1 t + φ 1 ) ,
E 2 ( t ) = E 02 cos ( ω 2 t + φ 2 ) ,
I r f = A cos [ ( ω 1 ω 2 ) t + ( φ 1 φ 2 ) ] ,

Metrics