Abstract

This Letter deals with the antireflective properties of top-patterned pyramids, looking like sand castles, bi-periodically repeated on a silicon surface. It is demonstrated numerically that such an original pattern allows a dramatic spectral and angular broadening of the antireflective efficiency. Design examples are given for wavelengths ranging from 0.5μmto5μm and incidence angles of 30° and 45°. Applications of such antireflective surfaces on photodetectors and solar cells are soon expected.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin Film Optical Filters (Institute of Physics, 1986).
    [CrossRef]
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, Appl. Opt. 41, 3075 (2002).
    [CrossRef] [PubMed]
  3. Y. Zhao, J. Wang, and G. Mao, Opt. Lett. 30, 1885 (2005).
    [CrossRef] [PubMed]
  4. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
    [CrossRef]
  5. C. Brückner, B. Pradarutti, O. Stenzel, and R. Steinko, Opt. Express 15, 779 (2007).
    [CrossRef] [PubMed]
  6. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
    [CrossRef]
  7. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, Opt. Express 17, 4646 (2009).
    [CrossRef] [PubMed]
  8. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
    [CrossRef]
  9. S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
    [CrossRef]
  10. Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
    [CrossRef]
  11. P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
    [CrossRef]
  12. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
    [CrossRef] [PubMed]
  13. E. Grann, M. Moharam, and D. Pommet, J. Opt. Soc. Am. A 12, 333 (1995).
    [CrossRef]
  14. A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
    [CrossRef]
  15. C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
    [CrossRef]
  16. W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
    [CrossRef]
  17. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, Opt. Commun. 226, 81 (2003).
    [CrossRef]
  18. R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, and Ph. Masclet, Opt. Express 16, 19304 (2008).
    [CrossRef]
  19. R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, Ph. Torchio, F. Flory, and Ph. Masclet, Opt. Express 17, 21590 (2009).
    [CrossRef] [PubMed]
  20. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
    [CrossRef]

2009

2008

2007

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

C. Brückner, B. Pradarutti, O. Stenzel, and R. Steinko, Opt. Express 15, 779 (2007).
[CrossRef] [PubMed]

2006

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

2005

2004

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

2003

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, Opt. Commun. 226, 81 (2003).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

2002

1995

1973

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Acree, M.

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Berginc, G.

Bittkau, K.

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Blasi, B.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Bouffaron, R.

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Brissonneau, V.

Brückner, C.

Buhler, C.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Carius, R.

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Chang, T. W.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Chang, Y. C.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Chi, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Chyan, J. Y.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Dobrowolski, J. A.

Escoubas, L.

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Flory, F.

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Gao, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, Opt. Commun. 226, 81 (2003).
[CrossRef]

Gombert, A.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Grann, E.

Hao, J.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Hossfeld, W.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Hsu, W. C.

Hutley, M. C.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Lee, C. K.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Lin, D. Z.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, Opt. Commun. 226, 81 (2003).
[CrossRef]

Lu, N.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Ma, P.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Institute of Physics, 1986).
[CrossRef]

Mao, G.

Masclet, Ph.

Mei, G. H.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Mick, J.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Moharam, M.

Niggemann, M.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Nitz, P.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Poitras, D.

Pommet, D.

Pradarutti, B.

Qi, D.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Simon, J. J.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Steinko, R.

Stenzel, O.

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Torchio, Ph.

Vakil, H.

Wang, J.

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Wang, T. J.

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Xu, H.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Yeh, J. A.

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

Yu, Z.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

Zhang, B.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Zhao, Y.

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, Appl. Phys. Lett. 88, 201116 (2006).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007).
[CrossRef]

C. Rockstuhl, F. Lederer, K. Bittkau, and R. Carius, Appl. Phys. Lett. 91, 171104 (2007).
[CrossRef]

J. Appl. Phys.

W. Zhou, M. Tao, L. Chen, and H. Yang, J. Appl. Phys. 102, 103105 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003).
[CrossRef]

Nanotechnology

Y. C. Chang, G. H. Mei, T. W. Chang, T. J. Wang, D. Z. Lin, and C. K. Lee, Nanotechnology 18, 285303 (2007).
[CrossRef]

Nature

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Opt. Commun.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, Opt. Commun. 226, 81 (2003).
[CrossRef]

Opt. Eng.

A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hossfeld, and M. Niggemann, Opt. Eng. 43, 2525 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. R. Soc. London, Ser. B

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273, 661 (2006).
[CrossRef]

Small

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).
[CrossRef] [PubMed]

Other

H. A. Macleod, Thin Film Optical Filters (Institute of Physics, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Shape of a standard top-flat pyramid. The pattern is repeated biperiodically on the silicon surface and is called structure 1. (b) Shape of a pyramid whose top is also biperiodically patterned. This structure is a top-patterned pyramid, is repeated biperiodically on the silicon surface, and is called structure 2.

Fig. 2
Fig. 2

Curve with squares, computed reflectivity versus wavelength (in normal incidence) of top-flat pyramids (structure 1: period P = 1 μ m , thickness T = 1.25 μ m , top-flat size M = 0.5 μ m ). Curve with circles, computed reflectivity versus wavelength (in normal incidence) of a top-patterned pyramid (structure 2: period P = 1 μ m , thickness T = 1.25 μ m , top-pattern size M = 0.5 μ m ). Characteristics of the pattern at the pyramid top for structure 2 (ratio M 2 P ): period p = 0.25 μ m , thickness t = 0.3125 μ m , top-pattern size m = 0.125 μ m .

Fig. 3
Fig. 3

Computed reflectivity versus wavelength, incidence angles (30° and 45°), in unpolarized light, of structure 2 (period P = 1 μ m , thickness T = 1.25 μ m , top-pattern size M = 0.5 μ m ) and comparison with the reflectivity of structure 1 having the same geometrical parameters. Characteristics of the pattern at the pyramid top of structure 2 (ratio M 2 P ): period p = 0.25 μ m , thickness t = 0.3125 μ m , top-pattern size m = 0.125 μ m .

Metrics