Abstract

We report highly efficient four wave mixing in a GaInP photonic crystal waveguide. Owing to its large bandgap, the ultrafast Kerr nonlinearity of GaInP is not diminished by two photon absorption and related carrier effects for photons in the 1550nm range. A four-wave-mixing efficiency of 49dB was demonstrated for cw pump and probe signals in the milliwatt range, while for pulsed pumps with a peak power of 25mW the conversion efficiency increased to 36dB. Measured conversion efficiency dependencies on pump probe detuning and on pump power are in excellent agreement with a simple analytical model from which the nonlinear parameter γ is extracted. γ scales approximately with the square of the slow down factor and varies from 800W1m1 at a pump wavelength λp=1532nmto2900W1m1 at λp=1550nm. These values are consistent with those obtained from self phase modulation experiments in similar devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
    [CrossRef] [PubMed]
  2. T. Baba, Nat. Photonics 2, 465 (2008).
    [CrossRef]
  3. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, J. Opt. Soc. Am. B 19, 2052 (2002).
    [CrossRef]
  4. S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 221108 (2009).
    [CrossRef]
  5. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Opt. Express 17, 7206 (2009).
    [CrossRef] [PubMed]
  6. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
    [CrossRef]
  7. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
    [CrossRef]
  8. C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
    [CrossRef]
  9. K. Suzuki, Y. Hamachi, and T. Baba, Opt. Express 17, 22393 (2009).
    [CrossRef]
  10. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
    [CrossRef]
  11. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, Opt. Express 17, 552 (2009).
    [CrossRef] [PubMed]
  12. Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 061105 (2009).
    [CrossRef]
  13. A. Parini, P. Hamel, A. De Rossi, S. Combrié, N. V. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, J. Lightwave Technol. 26, 3794 (2008).
    [CrossRef]
  14. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K Moravvej-Farshi, Opt. Express 17, 18340 (2009).
    [CrossRef] [PubMed]

2009

2008

A. Parini, P. Hamel, A. De Rossi, S. Combrié, N. V. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, J. Lightwave Technol. 26, 3794 (2008).
[CrossRef]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

T. Baba, Nat. Photonics 2, 465 (2008).
[CrossRef]

2006

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

2003

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

2002

Andreani, L. C.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Asakawa, K.

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Baba, T.

Baron, A.

Becker, C.

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

Businaro, L.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Colman, P.

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

Combrié, S.

Corcoran, B.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

De Rossi, A.

De Vittorio, M.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Delaye, P.

Di Fabrizio, E.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Dubreuil, N.

Ebnali-Heidari, M.

Eggleton, B. J.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Fan, S.

Frey, R.

Gabet, R.

Gottesman, Y.

Grillet, C.

Guizzetti, G.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Hamachi, Y.

Hamel, P.

Husko, C.

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

Ibanescu, M.

Ikeda, N.

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Inoue, K.

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Ippen, E.

Jaouën, Y.

Joannopoulos, J. D.

Johnson, S. G.

Krauss, T. F.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

Malvezzi, A. M.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Monat, C.

Moravvej-Farshi, M. K

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
[CrossRef] [PubMed]

Oda, H.

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Parini, A.

Passaseo, A.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Patrini, M.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Romanato, F.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Roosen, G.

Ryasnyanskiy, A.

Soljacic, M.

Sugimoto, Y.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Suzuki, K.

Talneau, A.

Tran, N. V.

Tran, Q. V.

Vadalà, G.

Vecchi, G.

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

von Freymann, G.

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

Vy Tran, Q.

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

Wegener, M.

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Opt. Express 17, 2944 (2009).
[CrossRef] [PubMed]

Wong, S.

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

Yamanaka, A.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 221108 (2009).
[CrossRef]

C. Becker, M. Wegener, S. Wong, and G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006).
[CrossRef]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, Appl. Phys. Lett. 93, 051114 (2008).
[CrossRef]

Q. Vy Tran, S. Combrié, P. Colman, and A. De Rossi, Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
[CrossRef]

T. Baba, Nat. Photonics 2, 465 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B

A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306–l (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Linear transmission of the PhC waveguide. Insets: SEM image of the PhC waveguide end facet with a mode converter, n g and β 2 spectra.

Fig. 2
Fig. 2

Experimental setup for FWM characterization. EDFA, erbium doped fiber amplifier; PC, polarization controller; SMF, single mode fiber.

Fig. 3
Fig. 3

FWM optical spectra for (a) cw pump and probe. (b) Pump is modulated with 100 ps wide pulses at a duty cycle of 1:16 while the probe is a cw signal. Since the OSA measures the average power, pump and FWM products are larger by 12 dB than their exhibited levels.

Fig. 4
Fig. 4

Degenerate FWM efficiency dependence on pump probe detuning for two pump wavelengths, λ p = 1532 nm and λ p = 1550 nm . Dots and solid curves denote experimental and calculated results, respectively.

Fig. 5
Fig. 5

FWM efficiency dependence on pump input power measured for λ p = 1532 nm and a detuning of 1.5 nm . Dots denote measured values, and the solid curve describes the calculated results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = P i ( L ) P b ( 0 ) = γ P p ( L ) g ( sinh ( g L ) ) 2 e α L
P p ( L ) = P p ( 0 ) ( 1 e α L α L ) .
g = ( γ P p ( L ) ) 2 ( Δ k L + Δ k N L 2 ) .

Metrics