Abstract

Time-domain spectroscopy using dual, coherent frequency combs is used to measure free-induction decay from a molecular gas sample in the near-IR with a time-domain signal-to-noise ratio of 106 over a 6ns window at 55fs time resolution (corresponding to the 9THz source bandwidth) and a frequency/timing accuracy set by the frequency combs. The free-induction decay exhibits the expected periodic pulses from the rephasing of the multiply excited rovibrational levels. This demonstration represents the first high-resolution, high-accuracy, broadband measurement of optical free-induction decay, to our knowledge.

© 2010 U.S. Government

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, 1961).
  2. B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
    [CrossRef] [PubMed]
  3. H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
    [CrossRef] [PubMed]
  4. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
    [CrossRef] [PubMed]
  5. R. G. Brewer and R. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).
    [CrossRef]
  6. A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
    [CrossRef]
  7. T. Mishina and Y. Masumotot, Phys. Rev. Lett. 71, 2785 (1993).
    [CrossRef] [PubMed]
  8. N. Tsurumachi, T. Fuji, S. Kawato, T. Hattori, and H. Nakatsuka, Opt. Lett. 19, 1867 (1994).
    [CrossRef] [PubMed]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef] [PubMed]
  10. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef] [PubMed]
  11. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, Opt. Express 13, 9029 (2005).
    [CrossRef] [PubMed]
  12. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
    [CrossRef]
  13. P. Giaccari, J. D. Deschenes, P. Saucier, J. Genest, and P. Tremblay, Opt. Express 16, 4347 (2008).
    [CrossRef] [PubMed]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
    [CrossRef]
  15. S. Schiller, Opt. Lett. 27, 766 (2002).
    [CrossRef]
  16. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
    [CrossRef]
  17. I. Coddington, W. C. Swann, and N. R. Newbury, Opt. Lett. 34, 2153 (2009).
    [CrossRef] [PubMed]
  18. P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
    [CrossRef]
  19. W. C. Swann and S. L. Gilbert, J. Opt. Soc. Am. B 22, 1749 (2005).
    [CrossRef]
  20. N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, Opt. Lett. 34, 2153 (2009).
[CrossRef] [PubMed]

2008 (3)

P. Giaccari, J. D. Deschenes, P. Saucier, J. Genest, and P. Tremblay, Opt. Express 16, 4347 (2008).
[CrossRef] [PubMed]

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

2005 (2)

2004 (1)

2002 (1)

1994 (1)

1993 (1)

T. Mishina and Y. Masumotot, Phys. Rev. Lett. 71, 2785 (1993).
[CrossRef] [PubMed]

1991 (1)

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

1980 (1)

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

1971 (1)

R. G. Brewer and R. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).
[CrossRef]

Abragam, A.

A. Abragam, The Principles of Nuclear Magnetism (Clarendon, 1961).

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Brehm, M.

Brewer, R. G.

R. G. Brewer and R. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).
[CrossRef]

Brown, G. G.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Coddington, I.

N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, Opt. Lett. 34, 2153 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Deschenes, J. D.

Dian, B. C.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

Douglass, K. O.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

Fuji, T.

Genack, A. Z.

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

Genest, J.

Giaccari, P.

Gilbert, S. L.

Gohle, C.

Griffiths, P. R.

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
[CrossRef]

Grischkowsky, D.

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Hansch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Harde, H.

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

Haseth, J. A.

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
[CrossRef]

Hattori, T.

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
[CrossRef] [PubMed]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

Kawato, S.

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

Keilmann, F.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Macfarlane, R. M.

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

Masumotot, Y.

T. Mishina and Y. Masumotot, Phys. Rev. Lett. 71, 2785 (1993).
[CrossRef] [PubMed]

Mishina, T.

T. Mishina and Y. Masumotot, Phys. Rev. Lett. 71, 2785 (1993).
[CrossRef] [PubMed]

Nakatsuka, H.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Newbury, N. R.

N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, Opt. Lett. 34, 2153 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Pate, B. H.

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

Saucier, P.

Schenzle, A.

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

Schiller, S.

Schliesser, A.

Shelby, R. M.

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

Shoemaker, R.

R. G. Brewer and R. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).
[CrossRef]

Swann, W. C.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Tremblay, P.

Tsurumachi, N.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

van der Weide, D.

Weitz, D. A.

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, Appl. Phys. Lett. 88, 241104 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, Nat. Photonics 4, 55 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (5)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

R. G. Brewer and R. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).
[CrossRef]

A. Z. Genack, D. A. Weitz, R. M. Macfarlane, R. M. Shelby, and A. Schenzle, Phys. Rev. Lett. 45, 438 (1980).
[CrossRef]

T. Mishina and Y. Masumotot, Phys. Rev. Lett. 71, 2785 (1993).
[CrossRef] [PubMed]

H. Harde, S. Keiding, and D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Science (1)

B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
[CrossRef] [PubMed]

Other (2)

A. Abragam, The Principles of Nuclear Magnetism (Clarendon, 1961).

P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Experimental setup showing lasers, interrogation path, and detection. Half the source pulse train passes through a gas cell of H 13 C 14 N gas and half circumvents it to create a reference pulse. The reference and signal pulses are combined with the LO pulse on a polarizing beam splitter (PBS), filtered by a scanning 2 nm bandpass optical filter and detected on a balanced detector. (b) Example data showing the measured reference and signal pulses, in effective time (i.e., the time delay between signal and LO pulses), after 100,000 averages ( 30 s ) for a filter centered at 195 THz and a 15 cm , 25  Torr cell. (c) Expanded view of the signal pulse [box in part (b)]. (d) Further expanded view. The signal consists of the incident pulse followed by the trailing FID signal, which exhibits ringing as the ensemble of vibrating rotating molecules periodically realign to radiate coherently in the forward direction.

Fig. 2
Fig. 2

Reconstructed FID for a 2.7  Torr , 20 cm H 13 C 14 N cell. (a) The FID with the peak at t = 0 normalized to one (off scale). (b) Expanded view of the FID from (a) compared with a simulation (gray, offset line). (c) Sonogram (i.e., short-time Fourier transform) of the FID with 200 GHz and 5 ps resolution (false color, log scale). The pulse peak is normalized to 0 dB . On the right is the HCN absorption spectrum to guide the eye. (d) The corresponding frequency-domain response magnitude (black) and phase (green, offset for clarity) of a single molecular line, demonstrating the high SNR and flat baseline. Small peaks to either side are hot bands. 

Metrics