Abstract

A technique to improve the accuracy of the retrieval of aerosol size-distribution is introduced. This technique includes a wavelength-selecting method and a “function model.” The wavelength-selecting method is used to select the suitable wavelengths for the retrieval of aerosol size-distribution, and the function model is used to express the aerosol size-distributions with a fewer parameters. By using this technique, the accuracy of the retrieval of aerosol size-distribution can be improved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
    [CrossRef]
  2. P. Kulkarni and J. Wang, J. Aerosol Sci. 37, 1303 (2006).
    [CrossRef]
  3. V. D. Hulst, Light Scattering by Small Particle (Wiley, 1957).
  4. R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, M. A. Garro, J. G. Slowik, E. S. Cross, J. H. Han, P. Davidovits, T. B. Onasch, and D. R. Worsnop, Appl. Opt. 46, 6990 (2007).
    [CrossRef] [PubMed]
  5. X. Q. He and W. Q. Liu, Application of the Regression Analysis (China Renmin U. Press, 2001).
  6. D. H. Kim, A. Abraham, and J. H. Cho, J. Inf. Sci. 177, 3918 (2007).
    [CrossRef]
  7. R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, M. A. Garro, and J. Walker, Environ. Sci. Technol. 40, 6647 (2006).
    [CrossRef] [PubMed]

2008 (1)

J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
[CrossRef]

2007 (2)

2006 (2)

R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, M. A. Garro, and J. Walker, Environ. Sci. Technol. 40, 6647 (2006).
[CrossRef] [PubMed]

P. Kulkarni and J. Wang, J. Aerosol Sci. 37, 1303 (2006).
[CrossRef]

Abraham, A.

D. H. Kim, A. Abraham, and J. H. Cho, J. Inf. Sci. 177, 3918 (2007).
[CrossRef]

Arnott, W. P.

Chakrabarty, R. K.

Cho, J. H.

D. H. Kim, A. Abraham, and J. H. Cho, J. Inf. Sci. 177, 3918 (2007).
[CrossRef]

Cross, E. S.

Davidovits, P.

Garro, M. A.

Han, J. H.

He, X. Q.

X. Q. He and W. Q. Liu, Application of the Regression Analysis (China Renmin U. Press, 2001).

Hulst, V. D.

V. D. Hulst, Light Scattering by Small Particle (Wiley, 1957).

Kim, D. H.

D. H. Kim, A. Abraham, and J. H. Cho, J. Inf. Sci. 177, 3918 (2007).
[CrossRef]

Kulkarni, P.

J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
[CrossRef]

P. Kulkarni and J. Wang, J. Aerosol Sci. 37, 1303 (2006).
[CrossRef]

Liu, W. Q.

X. Q. He and W. Q. Liu, Application of the Regression Analysis (China Renmin U. Press, 2001).

Moosmüller, H.

Olfert, J. S.

J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
[CrossRef]

Onasch, T. B.

Slowik, J. G.

Walker, J.

R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, M. A. Garro, and J. Walker, Environ. Sci. Technol. 40, 6647 (2006).
[CrossRef] [PubMed]

Wang, J.

J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
[CrossRef]

P. Kulkarni and J. Wang, J. Aerosol Sci. 37, 1303 (2006).
[CrossRef]

Worsnop, D. R.

Appl. Opt. (1)

Environ. Sci. Technol. (1)

R. K. Chakrabarty, H. Moosmüller, W. P. Arnott, M. A. Garro, and J. Walker, Environ. Sci. Technol. 40, 6647 (2006).
[CrossRef] [PubMed]

J. Aerosol Sci. (2)

J. S. Olfert, P. Kulkarni, and J. Wang, J. Aerosol Sci. 39, 940 (2008).
[CrossRef]

P. Kulkarni and J. Wang, J. Aerosol Sci. 37, 1303 (2006).
[CrossRef]

J. Inf. Sci. (1)

D. H. Kim, A. Abraham, and J. H. Cho, J. Inf. Sci. 177, 3918 (2007).
[CrossRef]

Other (2)

V. D. Hulst, Light Scattering by Small Particle (Wiley, 1957).

X. Q. He and W. Q. Liu, Application of the Regression Analysis (China Renmin U. Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optimized wavelength sets: (a) includes 50 wavelengths; (b) includes 17 wavelengths.

Fig. 2
Fig. 2

Standard size-distributions and the retrieval results. The curve is for the standard size-distributions, asterisks are for size-distributions retrieved by using FMOW, points are for size-distributions by using IMOW, and rings are for size-distributions retrieved by using IMEW. The correlation coefficients between the asterisks and the curve are (a) 0.962, (b) 0.986, (c) 0.973, and (d) 0.868, respectively. The correlation coefficients between the points and the curve are (a) 0.939, (b) 0.929, (c) 0.887, and (d) 0.816, respectively. The correlation coefficients between the rings and the curve are (a) 0.913, (b) 0.909, (c) 0.811, and (d) 0.792, respectively.

Fig. 3
Fig. 3

Optimized wavelength set of the polystyrene particles in water.

Fig. 4
Fig. 4

Size-distributions of the polystyrene particles. The histograms represent the results measured by using microscope, the asterisks represent the results from FMOW, and the rings represent the results from IMAW. The correlation coefficients between the asterisks and the histograms are (a) 0.888, (b) 0.838, and (c) 0.912, respectively. The correlation coefficients between the rings and the histograms are (a) 0.808, (b) 0.682, and (c) 0.839, respectively.

Fig. 5
Fig. 5

Experimental setup used to measure τ ( λ ) .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( λ ) = I 0 ( λ ) exp [ τ ( λ ) τ oth ( λ ) ] ,
τ ( λ ) = r min r max π r 2 Q ( r , λ ) n ( r ) d r ,
τ ( λ ) = i = 1 M π r i 2 Q ( r i , λ ) n i Δ r ,
Fitness = min { cond ( Q ) } ,
n ( r ) = b r a + d r σ 2 π exp [ ( ln   r u ) 2 2 σ 2 ] + i = 1 K γ i   exp { [ ( r β i ) / α i ] 2 } ,
Fitness = max { relat [ τ a ( λ ) , τ t ( λ ) ] } ,

Metrics