Abstract

The advantages of blue InGaN light-emitting diodes (LEDs) with AlGaN barriers are studied numerically. The performance curves, energy band diagrams, electrostatic fields, and carrier concentrations are investigated. The simulation results show that the InGaN∕AlGaN LED has better performance than its conventional InGaN∕GaN counterpart owing to the increase of hole injection and the enhancement of electron confinement. The simulation results also suggest that the efficiency droop is markedly improved when the traditional GaN barriers are replaced by AlGaN barriers.

© 2010 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription