Abstract

A novel magneto-optical (MO) waveguide with a nanoscale air gap (NAG) is presented. By using an NAG, the nonreciprocal phase shift (NPS) of the MO waveguide can be enhanced. A linear transition model is proposed to theoretically explain the NPS of the MO waveguide with the NAG. Simulation result shows that when the NAG thickness is less than 10nm, the MO waveguide exhibits an NPS more than four times that of the MO waveguide without the NAG.

© 2010 Optical Society of America

Full Article  |  PDF Article

Errata

Ruiyi Chen, Guomin Jiang, Yinlei Hao, Jianyi Yang, Minghua Wang, and Xiaoqing Jiang, "Enhancement of nonreciprocal phase shift by using nanoscale air gap: erratum," Opt. Lett. 38, 3354-3354 (2013)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-17-3354

References

  • View by:
  • |
  • |
  • |

  1. L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
    [CrossRef]
  2. H. Yokoi, Opt. Mater. 31, 189 (2008).
    [CrossRef]
  3. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [CrossRef] [PubMed]
  4. M. Hochberg, T. B. Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, Opt. Express 15, 8401 (2007).
    [CrossRef] [PubMed]
  5. A. G. Rahbar and O. W. Yang, J. Opt. Commun. Network 1, 219 (2009).
    [CrossRef]
  6. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. Popkov, J. Opt. Soc. Am. B 22, 240 (2005).
    [CrossRef]
  7. T. Uno and S. Noge, J. Eur. Ceram. Soc. 21, 1957 (2001).
    [CrossRef]

2009

A. G. Rahbar and O. W. Yang, J. Opt. Commun. Network 1, 219 (2009).
[CrossRef]

2008

H. Yokoi, Opt. Mater. 31, 189 (2008).
[CrossRef]

2007

2005

2004

2001

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

T. Uno and S. Noge, J. Eur. Ceram. Soc. 21, 1957 (2001).
[CrossRef]

Alekseev, A. M.

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

Almeida, V. R.

Bahlmann, N.

Barrios, C. A.

Dalton, L.

Dötsch, H.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. Popkov, J. Opt. Soc. Am. B 22, 240 (2005).
[CrossRef]

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

Gerhardt, R.

Hammer, M.

Hertel, P.

Hochberg, M.

Huang, J.

Jones, T. B.

Lipson, M.

Noge, S.

T. Uno and S. Noge, J. Eur. Ceram. Soc. 21, 1957 (2001).
[CrossRef]

Popkov, A.

Popkov, A. F.

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

Rahbar, A. G.

A. G. Rahbar and O. W. Yang, J. Opt. Commun. Network 1, 219 (2009).
[CrossRef]

Scherer, A.

Sullivan, P.

Träger, D.

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

Uno, T.

T. Uno and S. Noge, J. Eur. Ceram. Soc. 21, 1957 (2001).
[CrossRef]

Wang, G.

Wilkens, L.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. Popkov, J. Opt. Soc. Am. B 22, 240 (2005).
[CrossRef]

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

Xu, Q.

Yang, O. W.

A. G. Rahbar and O. W. Yang, J. Opt. Commun. Network 1, 219 (2009).
[CrossRef]

Yokoi, H.

H. Yokoi, Opt. Mater. 31, 189 (2008).
[CrossRef]

Zhuromskyy, O.

Appl. Phys. Lett.

L. Wilkens, D. Träger, H. Dötsch, A. F. Popkov, and A. M. Alekseev, Appl. Phys. Lett. 79, 4292 (2001).
[CrossRef]

J. Eur. Ceram. Soc.

T. Uno and S. Noge, J. Eur. Ceram. Soc. 21, 1957 (2001).
[CrossRef]

J. Opt. Commun. Network

A. G. Rahbar and O. W. Yang, J. Opt. Commun. Network 1, 219 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Mater.

H. Yokoi, Opt. Mater. 31, 189 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Profile of MO waveguide with NAG.

Fig. 2
Fig. 2

Electric field distribution when gap height equals 20 nm : (a) 2D, (b) 1D slice (width 0.4 μ m ).

Fig. 3
Fig. 3

Linear transition model and its parameters.

Fig. 4
Fig. 4

NPS versus gap height.

Fig. 5
Fig. 5

NPS when BTR thickness x 0 is 2 and 3 nm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ β = 2 ω ϵ 0 N E * Δ ϵ ̂ E d x d y ,
N = [ E × H * + E * × H ] Z d x d y ,
Δ ϵ ̂ = [ 0 0 i γ 0 0 0 i γ 0 0 ] .
Δ β TM = ω ϵ 0 β TM γ x E x 2 d x d y E x H y d x d y .
Δ β TM = ω ϵ 0 β TM E x H y d x d y m [ | γ E x 2 d y | m + 0 | γ E x 2 d y | m 0 ] .
Δ β TM = Δ β mo + Δ β bd .

Metrics