Abstract

We describe a numerical space-shifting reconstruction approach in digital holography. This method is able to remove the dc term in the reconstruction very effectively by utilizing the periodicity and the space-shifting property of inverse discrete Fourier transform. Since the entire process does not need any additional holograms and specific requirements to recording optics, this approach can be a really convenient, practical, and widely effective way to remove the dc term from in-line or off-axis digital holography.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).
  2. I. Yamaguchi and T. Zhang, Opt. Lett.  22, 1268 (1997).
    [CrossRef] [PubMed]
  3. J.-P. Liu and T.-C. Poon, Opt. Lett.  34, 250 (2009).
    [CrossRef] [PubMed]
  4. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, Appl. Opt.  45, 2995 (2006).
    [CrossRef] [PubMed]
  5. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, Appl. Opt.  45, 968 (2006).
    [CrossRef] [PubMed]
  6. T. M. Kreis and W. Jüptner, Opt. Eng.  36, 2357 (1997).
    [CrossRef]
  7. C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).
  8. J. A. H. Ramirez and J. Garcia-Sucerquia, Opt. Commun.  277, 259 (2007).
    [CrossRef]
  9. J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
    [CrossRef]
  10. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, Opt. Express  15, 8851 (2007).
    [CrossRef] [PubMed]
  11. J. W. Weng, J. G. Zhong, and C. Y. Hu, Opt. Express  16, 21971 (2008).
    [CrossRef] [PubMed]
  12. M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
    [CrossRef]
  13. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
    [CrossRef]
  14. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt.  39, 4070 (2000).
    [CrossRef]
  15. Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
    [CrossRef]
  16. T. M. Kreis, Opt. Eng.  41, 771 (2002).
    [CrossRef]

2009 (1)

2008 (1)

2007 (2)

2006 (2)

2004 (2)

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
[CrossRef]

Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
[CrossRef]

2003 (1)

M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
[CrossRef]

2002 (2)

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

T. M. Kreis, Opt. Eng.  41, 771 (2002).
[CrossRef]

2000 (1)

1997 (2)

T. M. Kreis and W. Jüptner, Opt. Eng.  36, 2357 (1997).
[CrossRef]

I. Yamaguchi and T. Zhang, Opt. Lett.  22, 1268 (1997).
[CrossRef] [PubMed]

Awatsuji, Y.

Blu, T.

M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
[CrossRef]

Bo, F.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Chang, C. -C.

Chen, G. -L.

Cheng, X.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Cuche, E.

Depeursinge, C.

E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt.  39, 4070 (2000).
[CrossRef]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).

Fujii, A.

Garcia-Sucerquia, J.

J. A. H. Ramirez and J. Garcia-Sucerquia, Opt. Commun.  277, 259 (2007).
[CrossRef]

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
[CrossRef]

Ge, B.

Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
[CrossRef]

Hu, C. Y.

Jüptner, W.

T. M. Kreis and W. Jüptner, Opt. Eng.  36, 2357 (1997).
[CrossRef]

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

Kreis, T. M.

T. M. Kreis, Opt. Eng.  41, 771 (2002).
[CrossRef]

T. M. Kreis and W. Jüptner, Opt. Eng.  36, 2357 (1997).
[CrossRef]

Kubota, T.

Kuo, M. -K.

Li, Y.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Liebling, M.

M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
[CrossRef]

Lin, C. -Y.

Liu, C.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Liu, J. -P.

Liu, Z.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Lu, Q.

Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
[CrossRef]

Marquet, P.

Matoba, O.

Pavillon, N.

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).

Poon, T. -C.

Prieto, D. V.

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
[CrossRef]

Ramirez, J. A. H.

J. A. H. Ramirez and J. Garcia-Sucerquia, Opt. Commun.  277, 259 (2007).
[CrossRef]

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
[CrossRef]

Sasada, M.

Schnars, U.

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

Seelamantula, C. S.

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).

Unser, M.

M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
[CrossRef]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).

Weng, J. W.

Yamaguchi, I.

Zhang, T.

Zhang, Y.

Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
[CrossRef]

Zhong, J. G.

Zhu, J.

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

Appl. Opt. (3)

Opt. Commun. (2)

J. A. H. Ramirez and J. Garcia-Sucerquia, Opt. Commun.  277, 259 (2007).
[CrossRef]

Y. Zhang, Q. Lu, and B. Ge, Opt. Commun.  240, 261 (2004).
[CrossRef]

Opt. Eng. (3)

T. M. Kreis, Opt. Eng.  41, 771 (2002).
[CrossRef]

C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng.  41, 2434 (2002).
[CrossRef]

T. M. Kreis and W. Jüptner, Opt. Eng.  36, 2357 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, Proc. SPIE  5622, 1353 (2004).
[CrossRef]

M. Liebling, T. Blu, and M. Unser, Proc. SPIE  5207, 553 (2003).
[CrossRef]

Other (2)

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, in Zero-Order-Free Image Reconstruction in Digital Holographic Microscopy, IEEE International Symposium on Biomedical Imaging–from Nano to Macro (2009).

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Periodic image distribution including the zero-order image from the in-line geometry, (b) Position exchanges of the areas 1 and 3, 2 and 4 from the two-dimensional space-shifting manipulation.

Fig. 2
Fig. 2

Experimental setup of recording the in-line digital holograms.

Fig. 3
Fig. 3

Experimental results from the in-line digital holography, (a) the hologram reconstruction with the Fresnel transformation without dc term suppression; (b) the use of intensity-averaging technique; (c) the two-dimensional space-shifting manipulation of the images; (d) the final result from the combination of (b) and (c) using matrix multiplication.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h CCD ( ξ , η ) = 1 4 Δ ξ Δ η h ( ξ , η ) [ rect ( ξ Δ ξ ) rect ( η Δ η ) comb ( ξ 2 Δ ξ ) comb ( η 2 Δ η ) ] × rect ( ξ M Δ ξ ) rect ( η N Δ η ) ,
= A ( ξ , η ) h ( ξ , η ) ,
Γ ( m , n ) = I D F T { A ( k , l ) U ( k , l ) } = I D F T { A ( k , l ) } I D F T { U ( k , l ) } .
I D F T { A ( k , l ) } = 1 4 M N Δ ξ Δ η m = n = sin   c ( m 2 ) sin   c ( n 2 ) sin   c ( m m M 2 ) × sin   c ( n n N 2 ) .
I D F T { U ( k , l ) } = I D F T { R ( k , l ) h ( k , l ) exp [ j π / ( λ d ) ( k 2 Δ ξ 2 + l 2 Δ η 2 ) ] } .
g ( x + x 0 , y + y 0 ) = I F T { G ( ω x , ω y ) exp [ j ω ( x 0 + y 0 ) ] } ,
Γ ( m + M / 2 , n + N / 2 ) = I D F T { ( 1 ) k + l A ( k , l ) U ( k , l ) } .

Metrics