Abstract

Diffraction rings are observed from photoinduced permanent memory of doped glass. The permanent memory is created by the high-intensity picosecond laser beam. A 1mm spot size of laser beam creates spatially variable refractive index memory, which appears as a void located inside the glass. When a probe laser beam passes through the memory region, the diffraction rings arisen from spatial phase modulation of the transverse phase of the input beam are created. Agreement between the observed and calculated beam pattern using Kirchhoff’s diffraction integral is satisfactory.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).
  2. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, Opt. Lett.  6, 411 (1981).
    [PubMed]
  3. E. Santamato and Y. R. Shen, Opt. Lett.  9, 564 (1984).
    [CrossRef] [PubMed]
  4. F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
    [CrossRef]
  5. K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
    [CrossRef]
  6. R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
    [CrossRef]
  7. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Micheal, and G. M. Finn, J. Opt. Soc. Am. B  4, 886 (1987).
    [CrossRef]

1997 (1)

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

1996 (1)

K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
[CrossRef]

1987 (1)

1984 (1)

1981 (1)

1980 (1)

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

1970 (1)

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Arakelian, S. M.

Chillag, L.

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Dabby, F. W.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Dambly, L.

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

Durbin, S. D.

Finn, G. M.

Gustafson, T. K.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Harrison, R. G.

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

Hou, J. Y.

Kelley, P. L.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Khoo, I. C.

Kitaeva, V. F.

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Kohanzadeh, Y.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Kohtani, Y.

K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
[CrossRef]

Kroo, N.

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Liu, T. H.

Lu, Weiping

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

Micheal, R. R.

Ogusu, K.

K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
[CrossRef]

Santamato, E.

Shao, H.

K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
[CrossRef]

Shen, Y. R.

Sobolev, N. N.

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Whinnery, J. R.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

Yan, P. Y.

Yu, Dejin

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

Zolot’ko, A. S.

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Appl. Phys. Lett. (1)

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Lett.  16, 362 (1970).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillag, JETP Lett.  32, 158 (1980).

Opt. Commun. (1)

R. G. Harrison, L. Dambly, Dejin Yu, and Weiping Lu, Opt. Commun.  139, 69 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

K. Ogusu, Y. Kohtani, and H. Shao, Opt. Rev.  3, 232 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diffraction rings observed at far field when the focused beam of a He–Ne laser ( 632 nm ) shines on the refractive index variation memory produced by a picosecond 532 nm laser beam.

Fig. 2
Fig. 2

Scanning-electron microscope image of the memory region.

Fig. 3
Fig. 3

Phase-shift profile (dashed-dotted) on the memory region and associated diffraction angle profile (solid).

Fig. 4
Fig. 4

Experimental and theoretically fitted data. The solid curve is the theoretical fit, and the dotted curve is the experimental data.

Fig. 5
Fig. 5

Diffraction rings appeared at the forward (left) and backward (right) observation planes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( ρ , Z ) = ( 2 π λ Z ) 2 I 0 | 0 r d r J 0 ( 2 π r ρ λ Z ) exp ( 2 r 2 ω 2 ) exp [ i ( ϕ D ( r ) + Δ ϕ ( r ) ) ] | 2 ,
ϕ D ( r ) = k ( r 2 2 Z + r 2 2 R ) ,
Δ ϕ ( r ) = 2 π λ 0 d Δ n ( r , z ) d z = ϕ max exp ( 2 r 2 a 2 ) ,
ϕ max = k ( n T ) d ( 1 exp ( α d ) h π ω 2 I 0 = k n 2 d I 0 ,
ϕ max 2 π N ,
k = d Δ ϕ d r .
θ k k .

Metrics