Abstract

Various path loss models have been developed for solar blind non-line-of-sight UV communication links under an assumption of coplanar source beam axis and receiver pointing direction. This work further extends an existing single-scattering coplanar analytical model to noncoplanar geometry. The model is derived as a function of geometric parameters and atmospheric characteristics. Its behavior is numerically studied in different noncoplanar geometric settings.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu and B. M. Sadler, IEEE Commun. Mag.  46, 67 (2008).
  2. D. M. Reilly and C. Warde, J. Opt. Soc. Am. A  69, 464 (1979).
    [CrossRef]
  3. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, J. Opt. Soc. Am. A  8, 1964 (1991).
    [CrossRef]
  4. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, Opt. Lett.  33, 1860 (2008).
    [CrossRef] [PubMed]
  5. D. Kedar and S. Arnon, Appl. Opt.  45, 8454 (2006).
    [CrossRef] [PubMed]
  6. H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
    [CrossRef]
  7. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, Opt. Express  17, 3929 (2009).
    [CrossRef] [PubMed]
  8. D. T. Gillespie, J. Opt. Soc. Am. A  2, 1307 (1985).
    [CrossRef]

2009 (2)

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
[CrossRef]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, Opt. Express  17, 3929 (2009).
[CrossRef] [PubMed]

2008 (2)

2006 (1)

1991 (1)

1985 (1)

1979 (1)

D. M. Reilly and C. Warde, J. Opt. Soc. Am. A  69, 464 (1979).
[CrossRef]

Arnon, S.

Chen, G.

Ding, H.

Gillespie, D. T.

Kedar, D.

Luettgen, M. R.

Majumdar, A.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
[CrossRef]

Reilly, D. M.

Sadler, B. M.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
[CrossRef]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, Opt. Express  17, 3929 (2009).
[CrossRef] [PubMed]

Z. Xu and B. M. Sadler, IEEE Commun. Mag.  46, 67 (2008).

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, Opt. Lett.  33, 1860 (2008).
[CrossRef] [PubMed]

Shapiro, J. H.

Warde, C.

D. M. Reilly and C. Warde, J. Opt. Soc. Am. A  69, 464 (1979).
[CrossRef]

Xu, Z.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
[CrossRef]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, Opt. Express  17, 3929 (2009).
[CrossRef] [PubMed]

Z. Xu and B. M. Sadler, IEEE Commun. Mag.  46, 67 (2008).

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, Opt. Lett.  33, 1860 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, IEEE Commun. Mag.  46, 67 (2008).

IEEE J. Sel. Areas Commun. (1)

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, IEEE J. Sel. Areas Commun.  27, 1535 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

System geometry and ray pointing.

Fig. 2
Fig. 2

Path loss per cm 2 versus off-axis angle.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E o = l min l max E t e σ e ( l + L ) σ s P ( θ s ) cos ( ζ ) d V Ω l 2 L 2 I ,
cos ( ζ ) = L 2 l 2 cos ( 2 θ t ) r 2 + 2 r l cos ( θ t ) cos ( β + φ ) 2 l L sin ( θ t ) .
E o = E t I cos ( θ t ) σ s d φ d θ 2 π [ 1 cos ( ϕ t / 2 ) ] l min l max P ( θ s ) cos ( ζ ) d l L 2 exp [ σ e ( l + L ) ] .
E r = E t σ s θ min θ max cos ( θ t ) φ min φ max I l min l max P ( θ s ) cos ( ζ ) d l d φ d θ L 2 exp [ σ e ( l + L ) ] 2 π [ 1 cos ( ϕ t / 2 ) ] ,
x 2 tan 2 ( θ t ) tan 2 ( ϕ r / 2 ) = x 2 + r 2 2 x r cos ( β + φ ) ,
x 1 , 2 = [ cos ( β + φ ) ± cos 2 ( β + φ ) Λ ] r / Λ ,
l max = x 1 cos ( θ t ) , l min = x 2 cos ( θ t ) .
α max = arcsin [ tan ( θ t ) tan ( ϕ r / 2 ) ] .
l 2 + L 2 + 2 L l cos θ s = r 2 ,
( l l min ) 2 + L 2 + 2 ( l l min ) L cos θ s = [ l min sin ( θ t ) cos ( ϕ r / 2 ) ] 2 ,
L = l [ l l min + l min sin 2 ( θ t ) / cos 2 ( ϕ r / 2 ) ] ( l / l min 1 ) r 2 ,
θ s = arccos [ ( r 2 l 2 L 2 ) / ( 2 L l ) ] .
x 2 + y 2 = [ D sin ( π / 2 θ t ) ] 2 ,
[ x D cos ( ϕ t / 2 ) cos θ t ] 2 [ D sin ( ϕ t / 2 ) cos ( π / 2 θ t ) ] 2 + y 2 [ D sin ( ϕ t / 2 ) ] 2 = 1 ,
θ min = ϕ t / 2 , θ max = min ( ϕ t / 2 , π / 2 θ t ) .

Metrics