Abstract

We propose an intensity modulator based on injection locking of a resonant cavity with gain that has a linear transfer function, multigigahertz bandwidth, possible optical gain, and very low Vπ. The arcsine phase response of the injection-locked resonant cavity placed in one arm of a Mach–Zehnder interferometer is the key to the true linear performance of this modulator. The first (to our knowledge) demonstration of this modulator with 5GHz bandwidth, Vπ of 2.6mV, and 95dB spur-free dynamic range is reported here.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
    [CrossRef]
  2. D. J. Fernandes Barros and J. M. Kahn, J. Lightwave Technol. 27, 2370 (2009).
    [CrossRef]
  3. D. Novak, IEEE LEOS Newsletter 23, 21 (2009).
  4. R. Sadhwani and B. Jalali, J. Lightwave Technol. 21, 3180 (2003).
    [CrossRef]
  5. P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
    [CrossRef]
  6. B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
    [CrossRef]
  7. X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
    [CrossRef]
  8. A. Djupsjöbacka, IEEE Photon. Technol. Lett. 4, 869 (1992).
    [CrossRef]
  9. G. E. Betts, IEEE Trans. Microwave Theory Tech. 42, 2642 (1994).
    [CrossRef]
  10. J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
    [CrossRef]
  11. R. Adler, in Proceedings of the IRE (IEEE, 1946), Vol. 34, pp. 351–357.
    [CrossRef]
  12. A. E. Siegman, in Lasers (University Science Books, 1986), pp. 1129–1179.
  13. E. Lau, X. Zhao, H. Suang, D. Parekh, C. C. Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
    [CrossRef] [PubMed]
  14. A. Yariv, in Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 558–603.

2009 (3)

B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
[CrossRef]

D. Novak, IEEE LEOS Newsletter 23, 21 (2009).

D. J. Fernandes Barros and J. M. Kahn, J. Lightwave Technol. 27, 2370 (2009).
[CrossRef]

2008 (1)

2006 (1)

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

2003 (2)

R. Sadhwani and B. Jalali, J. Lightwave Technol. 21, 3180 (2003).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

1999 (1)

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

1997 (1)

A. Yariv, in Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 558–603.

1994 (2)

G. E. Betts, IEEE Trans. Microwave Theory Tech. 42, 2642 (1994).
[CrossRef]

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

1992 (1)

A. Djupsjöbacka, IEEE Photon. Technol. Lett. 4, 869 (1992).
[CrossRef]

1986 (1)

A. E. Siegman, in Lasers (University Science Books, 1986), pp. 1129–1179.

1946 (1)

R. Adler, in Proceedings of the IRE (IEEE, 1946), Vol. 34, pp. 351–357.
[CrossRef]

Ackerman, E. I.

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

Adler, R.

R. Adler, in Proceedings of the IRE (IEEE, 1946), Vol. 34, pp. 351–357.
[CrossRef]

Betts, G. E.

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

G. E. Betts, IEEE Trans. Microwave Theory Tech. 42, 2642 (1994).
[CrossRef]

Chang, W. S. C.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Chow, F.

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

Cox, C. H.

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

Davies, M.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Djupsjöbacka, A.

A. Djupsjöbacka, IEEE Photon. Technol. Lett. 4, 869 (1992).
[CrossRef]

Farwell, M. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Fernandes Barros, D. J.

Freundorfer, A. P.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Gaeta, C. J.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Hasnain, C. C.

Jalali, B.

Joyce, R. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Kahn, J. M.

Kang, J.

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

Khurgin, J.

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

Khurgin, J. B.

B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
[CrossRef]

Lam, J. F.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Lau, E.

Lee, J.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Morton, P. A.

B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
[CrossRef]

Myslinski, P.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Novak, D.

D. Novak, IEEE LEOS Newsletter 23, 21 (2009).

Parekh, D.

Prince, J. L.

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

Sadhwani, R.

Schaffner, J. H.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Shearing, P.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Siegman, A. E.

A. E. Siegman, in Lasers (University Science Books, 1986), pp. 1129–1179.

Sitch, J.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Suang, H.

Szbert, C.

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Tangonan, G. L.

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

Wu, M. C.

Xie, X.

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

Yariv, A.

A. Yariv, in Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 558–603.

Zhang, B.

B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
[CrossRef]

Zhao, X.

IEEE LEOS Newsletter (1)

D. Novak, IEEE LEOS Newsletter 23, 21 (2009).

IEEE Photon. Technol. Lett. (4)

B. Zhang, J. B. Khurgin, and P. A. Morton, IEEE Photon. Technol. Lett. 21, 1621 (2009).
[CrossRef]

X. Xie, J. Khurgin, J. Kang, and F. Chow, IEEE Photon. Technol. Lett. 15, 531 (2003).
[CrossRef]

A. Djupsjöbacka, IEEE Photon. Technol. Lett. 4, 869 (1992).
[CrossRef]

J. H. Schaffner, J. F. Lam, C. J. Gaeta, G. L. Tangonan, R. L. Joyce, M. L. Farwell, and W. S. C. Chang, IEEE Photon. Technol. Lett. 6, 273 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

C. H. Cox III, E. I. Ackerman, G. E. Betts, and J. L. Prince, IEEE Trans. Microwave Theory Tech. 54, 906 (2006).
[CrossRef]

G. E. Betts, IEEE Trans. Microwave Theory Tech. 42, 2642 (1994).
[CrossRef]

J. Lightwave Technol. (2)

Microwave Opt. Technol. Lett. (1)

P. Myslinski, C. Szbert, A. P. Freundorfer, P. Shearing, J. Sitch, M. Davies, and J. Lee, Microwave Opt. Technol. Lett. 2, 85 (1999).
[CrossRef]

Opt. Express (1)

Other (3)

A. Yariv, in Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 558–603.

R. Adler, in Proceedings of the IRE (IEEE, 1946), Vol. 34, pp. 351–357.
[CrossRef]

A. E. Siegman, in Lasers (University Science Books, 1986), pp. 1129–1179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation results of the performance of the resonant cavity linear modulator (solid line) versus electro-optic Mach–Zehnder modulator (dashed line): (a) SFDR versus depth of modulation, (b) SFDR versus bias point of the modulator at 10% depth of modulation.

Fig. 2
Fig. 2

System diagram. VCSEL, vertical-cavity surface-emitting laser; VOA, variable optical attenuator; PS, phase shifter; PC, polarization controller; ISO, isolator; CIR, circulator; TEC, temperature controller; RFSA, rf spectrum analyzer; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Static phase shift plot of the injection-locked VCSEL.

Fig. 4
Fig. 4

Frequency response of the linear modulator. The 10 dB bandwidth is 5 GHz .

Fig. 5
Fig. 5

SFDR measurements: (a) power spectrum at the output of the two-tone SFDR measurement using 300 and 400 MHz tones, (b) low-resolution bandwidth ( 1 Hz ) spectrum of the 500 MHz third-order intermodulation tone.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ ( ω 1 ) = arcsin ( ω 0 ω 1 ω m ) ,
I out = I in { 1 + cos ( arcsin ( f ( t ) ) π 2 ) } = I in ( 1 + f ( t ) ) .

Metrics