Abstract

We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as 2.5ps) are successfully demonstrated using the fabricated FBG devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  2. N. Q. Ngo, Appl. Opt.��45, 6785 (2006).
    [CrossRef] [PubMed]
  3. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, Opt. Express��16, 18202 (2008).
    [CrossRef] [PubMed]
  4. Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun.��281, 5315 (2008).
    [CrossRef]
  5. Y. Park, T.-J. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express��16, 17817 (2008).
    [CrossRef] [PubMed]
  6. M. A. Preciado and M. A. Muriel, Opt. Lett.��33, 1348 (2008).
    [CrossRef] [PubMed]
  7. N. Q. Ngo, Opt. Lett.��32, 3402 (2007).
    [CrossRef] [PubMed]
  8. M. H. Asghari and J. Azaña, Opt. Express��16, 11459 (2008).
    [CrossRef] [PubMed]
  9. M. H. Asghari and J. Azaña, Opt. Lett.��33, 1548 (2008).
    [CrossRef] [PubMed]
  10. M. H. Asghari and J. Azaña, J. Lightwave Technol.��27, 3888 (2009).
    [CrossRef]
  11. J. Skaar, W. Ligang, and T. Erdogan, IEEE J. Quantum Electron.��37, 165 (2001).
    [CrossRef]

2009 (1)

2008 (6)

2007 (1)

2006 (1)

2001 (1)

J. Skaar, W. Ligang, and T. Erdogan, IEEE J. Quantum Electron.��37, 165 (2001).
[CrossRef]

1996 (1)

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Ahn, T.?J.

Ahn, T.?-J.

Asghari, M.?H.

Ayotte, N.

Azaña, J.

Dai, Y.

Ding, Y.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun.��281, 5315 (2008).
[CrossRef]

Doucet, S.

Erdogan, T.

J. Skaar, W. Ligang, and T. Erdogan, IEEE J. Quantum Electron.��37, 165 (2001).
[CrossRef]

Hamid, S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Huang, D.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun.��281, 5315 (2008).
[CrossRef]

LaRochelle, S.

Ligang, W.

J. Skaar, W. Ligang, and T. Erdogan, IEEE J. Quantum Electron.��37, 165 (2001).
[CrossRef]

Muriel, M.?A.

Ngo, N.?Q.

Oppenheim, A.?V.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Park, Y.

Preciado, M.?A.

Skaar, J.

J. Skaar, W. Ligang, and T. Erdogan, IEEE J. Quantum Electron.��37, 165 (2001).
[CrossRef]

Slavík, R.

Willsky, A.?S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Yao, J.

Zhang, X.?-B.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun.��281, 5315 (2008).
[CrossRef]

Zhang, X.?-L.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun.��281, 5315 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for temporal characterization of the fabricated FBG-based first- and second-order ultrafast photonic temporal integrators.

Fig. 2
Fig. 2

Experimentally measured ultrashort temporal pulse responses of the fabricated FBG-based (a) first- and (b) second-order temporal integrators (blue solid lines) compared to the corresponding ideal temporal impulse responses (red dashed lines). The insets in each plot show the designed FBG apodization profile and the corresponding FBG reflection amplitude spectral response.

Fig. 3
Fig. 3

Reflection temporal responses to the input optical signal with the measured temporal envelope plotted in (a). Experimentally recovered amplitude (blue solid line) and phase (green dotted line) temporal profiles of the reflected optical waveform from (b) first-order and (c) second-order temporal integrator, compared to the ideal output amplitude profile, i.e., numerical first-order and second-order cumulative time integration of the signal in (a) (red circles). The operation time window in each case is indicated with a gray hatched box.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h N ( t ) t N 1 × ( t T h / 2 T h ) ,

Metrics