Abstract

Electromagnetic activity of a single, subwavelength helix is explored under transverse illumination with terahertz electromagnetic pulses. By measuring the phase accrual difference between right- and left-circularly polarized components of the pulse transmitted through a series of identically shaped helices, where sections of each helix have been systematically removed, a linear relationship is discovered between the electromagnetic activity of a helix and its thickness in the propagation direction of the electromagnetic wave. A single helix is thus shown to possess intrinsic electromagnetic activity, describable by an effective circular birefringence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Arago, Mem. Inst.��1, 93 (1811).
  2. J. B. Biot, Bull. Soc. Philomat.�190 (1815).
  3. A. Fresnel, Oeuvres��1, 731 (1822).
  4. L. Pasteur, Ann. Chim. et Phys.��24, 442 (1848).
  5. K. F. Lindman, Ann. Phys. (Paris)��63, 621 (1920).
  6. I. Tinoco and M. P. Freeman, J. Phys. Chem.��61, 1196 (1957).
    [CrossRef]
  7. M. H. Winkler, J. Phys. Chem.��60, 1656 (1956).
    [CrossRef]
  8. T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
    [CrossRef]
  9. V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
    [CrossRef]
  10. S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge U. Press, (1982).
  11. N. C. J. van der Valk, A. M. van der Marel, and P. C. M. Planken, Opt. Lett.��30, 2802 (2005).
    [CrossRef] [PubMed]
  12. K. J. Chau, M. C. Quong, and A. Y. Elezzabi, Opt. Express��15, 3557 (2007).
    [CrossRef] [PubMed]

2007

2005

1994

V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
[CrossRef]

1990

T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
[CrossRef]

1982

S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge U. Press, (1982).

1957

I. Tinoco and M. P. Freeman, J. Phys. Chem.��61, 1196 (1957).
[CrossRef]

1956

M. H. Winkler, J. Phys. Chem.��60, 1656 (1956).
[CrossRef]

1920

K. F. Lindman, Ann. Phys. (Paris)��63, 621 (1920).

1848

L. Pasteur, Ann. Chim. et Phys.��24, 442 (1848).

1822

A. Fresnel, Oeuvres��1, 731 (1822).

1815

J. B. Biot, Bull. Soc. Philomat.�190 (1815).

1811

D. F. Arago, Mem. Inst.��1, 93 (1811).

Arago, D.?F.

D. F. Arago, Mem. Inst.��1, 93 (1811).

Biot, J.?B.

J. B. Biot, Bull. Soc. Philomat.�190 (1815).

Chau, K.?J.

Elezzabi, A.?Y.

Freeman, M.?P.

I. Tinoco and M. P. Freeman, J. Phys. Chem.��61, 1196 (1957).
[CrossRef]

Fresnel, A.

A. Fresnel, Oeuvres��1, 731 (1822).

Guire, T.

T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
[CrossRef]

Lindman, K.?F.

K. F. Lindman, Ann. Phys. (Paris)��63, 621 (1920).

Mason, S.?F.

S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge U. Press, (1982).

Pasteur, L.

L. Pasteur, Ann. Chim. et Phys.��24, 442 (1848).

Planken, P.?C. M.

Quong, M.?C.

Ro, R.

V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
[CrossRef]

Tinoco, I.

I. Tinoco and M. P. Freeman, J. Phys. Chem.��61, 1196 (1957).
[CrossRef]

van der Marel, A.?M.

van der Valk, N.?C. J.

Varadan, V.?K.

V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
[CrossRef]

T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
[CrossRef]

Varadan, V.?V.

V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
[CrossRef]

T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
[CrossRef]

Winkler, M.?H.

M. H. Winkler, J. Phys. Chem.��60, 1656 (1956).
[CrossRef]

Ann. Chim. et Phys.

L. Pasteur, Ann. Chim. et Phys.��24, 442 (1848).

Ann. Phys. (Paris)

K. F. Lindman, Ann. Phys. (Paris)��63, 621 (1920).

Bull. Soc. Philomat.

J. B. Biot, Bull. Soc. Philomat.�190 (1815).

IEEE Trans. Electromagn. Compat.

T. Guire, V. V. Varadan, and V. K. Varadan, IEEE Trans. Electromagn. Compat.��32, 300 (1990).
[CrossRef]

J. Phys. Chem.

I. Tinoco and M. P. Freeman, J. Phys. Chem.��61, 1196 (1957).
[CrossRef]

M. H. Winkler, J. Phys. Chem.��60, 1656 (1956).
[CrossRef]

Mem. Inst.

D. F. Arago, Mem. Inst.��1, 93 (1811).

Oeuvres

A. Fresnel, Oeuvres��1, 731 (1822).

Opt. Express

Opt. Lett.

Radio. Sci.

V. V. Varadan, R. Ro, and V. K. Varadan, Radio. Sci.��29, 9 (1994).
[CrossRef]

Other

S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge U. Press, (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Real part of the (dashed) RCP and (solid) LCP components of the pulse transmitted through the polymer without the helix (blue, top) and through the polymer with the helix (red, bottom). The incident electric field is oriented along the axis of the helix. (b) Time-dependent phase accrual difference between the RCP and LCP components for the pulse transmitted through the polymer without the helix (blue) and through the polymer with the helix (red).

Fig. 2
Fig. 2

(a) Phase-accrual difference as a function of the relative orientation of the incident electric field and the helical axis (evaluated at a frequency 0.45 THz ) for transmission through helices of length L = 36 μ m (blue squares), L = 147 μ m (red circles), and L = 235 μ m (green triangles). The curves are lines-of-best-fit that serve as guides to the eye. (b) Measured values of the orientation-averaged phase accrual difference as a function of helix length L, along with a linear fit to the data (red line).

Metrics