Abstract

To improve the replicating quality in producing micro-optical elements with continuous relief, the resist layer on substrate is shaped against the negative stamp by dry etching to enable it to have the same geometry as the pattern area of the negative stamp. The negative stamp is then aligned with and imprinted into the shaped resist. The produced continuous relief is transferred into the substrate by dry etching as well. Experiment results indicate that this method has both the long service life of a negative stamp and easy filling of a positive stamp.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Nikolajeff, S. Hard, and B. Curtis, Appl. Opt.��36, 8481 (1997).
    [CrossRef]
  2. T. J. Suleski and K. R. Te, J. Lightwave Technol.��23, 633 (2005).
    [CrossRef]
  3. T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
    [CrossRef]
  4. B. Cui and T. Veres, Microelectron. Eng.��83, 902 (2006).
    [CrossRef]
  5. M. T. Gale, in Micro-Optics: Elements, Systems and Applications, H.P.Herzig, ed. (Academic, 1997), pp. 162–163.
  6. Z. Cui, in Nanofabrication: Principles, Capabilities and Limits, Z.Cui, ed. (Academic, 2008), pp. 166–168.
  7. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
    [CrossRef]
  8. H. C. Scheer and H. Schulz, Microelectron. Eng.��56, 311 (2001).
    [CrossRef]
  9. S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
    [CrossRef] [PubMed]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
    [CrossRef]
  11. T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
    [CrossRef]
  12. X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
    [CrossRef]

2008 (1)

Z. Cui, in Nanofabrication: Principles, Capabilities and Limits, Z.Cui, ed. (Academic, 2008), pp. 166–168.

2007 (1)

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

2006 (2)

B. Cui and T. Veres, Microelectron. Eng.��83, 902 (2006).
[CrossRef]

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

2001 (2)

H. C. Scheer and H. Schulz, Microelectron. Eng.��56, 311 (2001).
[CrossRef]

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

2000 (1)

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

1997 (2)

F. Nikolajeff, S. Hard, and B. Curtis, Appl. Opt.��36, 8481 (1997).
[CrossRef]

M. T. Gale, in Micro-Optics: Elements, Systems and Applications, H.P.Herzig, ed. (Academic, 1997), pp. 162–163.

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
[CrossRef]

Bao, L.?R.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Borzenko, T.

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

Chaix, N.

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Cheng, X.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Chou, S.?Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
[CrossRef]

Cui, B.

B. Cui and T. Veres, Microelectron. Eng.��83, 902 (2006).
[CrossRef]

Cui, Z.

Z. Cui, in Nanofabrication: Principles, Capabilities and Limits, Z.Cui, ed. (Academic, 2008), pp. 166–168.

Curtis, B.

David, C.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

Davoust, L.

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

Gale, M.?T.

M. T. Gale, in Micro-Optics: Elements, Systems and Applications, H.P.Herzig, ed. (Academic, 1997), pp. 162–163.

Gobrecht, J.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

Gourgon, C.

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Guo, L.?J.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Hard, S.

Heyderman, L.?J.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

Huang, X.?D.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Janssen, H.

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

Krauss, P.?R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
[CrossRef]

Landis, S.

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Leveder, T.

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Molenkamp, L.?W.

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

Nikolajeff, F.

Pang, S.?W.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Perret, C.

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Renstrom, P.?J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
[CrossRef]

Scheer, H.?C.

H. C. Scheer and H. Schulz, Microelectron. Eng.��56, 311 (2001).
[CrossRef]

Schift, H.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

Schmidt, G.

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

Schulz, H.

H. C. Scheer and H. Schulz, Microelectron. Eng.��56, 311 (2001).
[CrossRef]

Schweizer, T.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

Suleski, T.?J.

Te, K.?R.

Tormen, M.

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

Veres, T.

B. Cui and T. Veres, Microelectron. Eng.��83, 902 (2006).
[CrossRef]

Yee, A.?F.

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen, Appl. Phys. Lett.��79, 2246 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (2)

X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B��20, 2872 (2002).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B��14, 4129 (1996).
[CrossRef]

Microelectron. Eng. (4)

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng.��54, 229 (2000).
[CrossRef]

H. C. Scheer and H. Schulz, Microelectron. Eng.��56, 311 (2001).
[CrossRef]

T. Leveder, S. Landis, L. Davoust, and N. Chaix,Microelectron. Eng.��84, 953 (2007).
[CrossRef]

B. Cui and T. Veres, Microelectron. Eng.��83, 902 (2006).
[CrossRef]

Nanotechnology (1)

S. Landis, N. Chaix, C. Gourgon, C. Perret, and T. Leveder, Nanotechnology��17, 2701 (2006).
[CrossRef] [PubMed]

Other (2)

M. T. Gale, in Micro-Optics: Elements, Systems and Applications, H.P.Herzig, ed. (Academic, 1997), pp. 162–163.

Z. Cui, in Nanofabrication: Principles, Capabilities and Limits, Z.Cui, ed. (Academic, 2008), pp. 166–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of (a) traditional imprinting and (b) resist shaping.

Fig. 2
Fig. 2

Diagram of stamp: Fresnel lens with a series of concentric continuous relief, 7 mm in radius, and a pattern area of 5 mm in radius, 298 zones in the radial direction.

Fig. 3
Fig. 3

Comparison of residual layer obtained by (a) traditional imprinting and (b) resist shaping at edges.

Fig. 4
Fig. 4

Comparison of (a), (b) filling effect of traditional imprinting and (c), (d) resist shaping at (a), (c) centers and (b), (d) edges.

Fig. 5
Fig. 5

Result of residual layer at edge obtained with a shaped resist of 5.05 mm in radius.

Fig. 6
Fig. 6

Demolding schematic diagrams of (a) traditional imprinting and (b) resist shaping.

Fig. 7
Fig. 7

(a), (b) Scanning electron microscope images (c), (d) and relieves of RIE results obtained using resist shaping at (a), (c) centers and (b), (d) edges.

Metrics