Abstract

Computer simulation studies of absorption enhancement in a silicon (Si) substrate by nanoshell-related localized surface plasmon resonance (LSPR) based on a finite-difference time-domain analysis are presented. The results of these studies show significant enhancement of over 15× in the near-bandgap spectral region of Si, using 40 nm diameter, two-dimensional silver (Ag) nanoshells, simulating cylindrical nanoshell structure. The studies also indicate a clear advantage of the cylindrical nanoshell structure over that of a completely filled Ag-nanocylinders. The enhancement was studied as a function of the metallic shell thickness. The results suggest that the main enhancement mechanism in this case of tubular nanoshells embedded in the Si substrate is that of field-enhanced absorption caused by the strong LSPR-enhanced electric field, extending into the silicon substrate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  2. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
    [CrossRef]
  3. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
    [CrossRef]
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
    [CrossRef] [PubMed]
  6. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
    [CrossRef]
  7. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
    [CrossRef]
  8. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
    [CrossRef]
  9. K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
    [CrossRef]
  10. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
    [CrossRef]
  11. M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
    [CrossRef]
  12. L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
    [CrossRef]
  13. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
    [CrossRef]

2009

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

2008

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
[CrossRef]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

2007

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006

K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

2005

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

1996

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Bergli, J.

M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

Chen, G.

L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
[CrossRef]

Chen, X.

L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Galperin, Y. M.

M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Hu, L.

L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Kirkengen, M.

M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

Plessen, G. v.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Simon, J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

ACS Nano

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).
[CrossRef]

Appl. Phys. Lett.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
[CrossRef]

J. Appl. Phys.

K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. Comput. Theor. Nanosci.

L. Hu, X. Chen, and G. Chen, J. Comput. Theor. Nanosci. 5, 2096 (2008).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Phys. Status Solidi A

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Geometry of simulated structure. Nanoshells are embedded in a 50 nm Si host film in a lattice with 80 nm pitch. (b) Cross-sectional shapes of the simulated nanoshells.

Fig. 2
Fig. 2

Absorption by Si for 40 nm diameter circular shells with shell-thickness variation. (a) shows two representative results for 12 and 4 nm shell thicknesses compared to the absorption by bare Si. (b) Spectral dependence of absorption by Si for different nanoshell thicknesses.

Fig. 3
Fig. 3

Enhancement of Si absorption integrated over three spectral ranges. 0 nm shell thickness stands for bare Si, and 20 nm shell thickness stands for whole metal cylinders. The absorption enhancement relative to that of a 50 nm Si film in the same spectral range is shown on the left hand scale (solid curves). The same result normalized to metallic shell area is shown on the right- hand scale (dashed curves).

Fig. 4
Fig. 4

(a) Spectral absorption by Si, and (b) total absorption in the 500–1000 nm spectral range, for 4-nm-thick 40 nm diameter tubular nanoshells with different cross-sectional shapes and core materials.

Metrics