Abstract

We demonstrate low-power thermo-optic-based optical bistability in a free-standing silicon ring resonator. A bistable optical response is achieved at reduced pump powers by thermally isolating the ring resonator from its supporting substrate with an air gap. The conversion efficiency from optical power to temperature change in the silicon core is enhanced. The optical transfer function of the resulting free-standing resonator exhibits a hysteresis loop for 80μW input optical power. Similar nonthermally isolated resonators at the same detuning do not exhibit a bistable mode for input powers less than 2 mW.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
    [CrossRef]
  3. H. J. Eichler, Opt. Commun. 45, 62 (1983).
    [CrossRef]
  4. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, Opt. Express 13, 2678 (2005).
    [CrossRef] [PubMed]
  5. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
    [CrossRef] [PubMed]
  6. Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006).
    [CrossRef] [PubMed]
  7. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, Opt. Express 13, 9623 (2005).
    [CrossRef] [PubMed]
  8. S. D. Smith, Appl. Opt. 25, 1550 (1986).
    [CrossRef] [PubMed]
  9. D. R. Lide, Handbook of Chemistry and Physics (CRC, 2008).
  10. P. Sun and R. M. Reano, Opt. Express 17, 4565 (2009).
    [CrossRef] [PubMed]
  11. C. Z. Tan and J. Arndt, J. Phys. Chem. Solids 61, 1315 (2000).
    [CrossRef]
  12. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
    [CrossRef]

2009 (1)

2008 (1)

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2008).

2006 (1)

2005 (2)

2004 (1)

2000 (1)

C. Z. Tan and J. Arndt, J. Phys. Chem. Solids 61, 1315 (2000).
[CrossRef]

1992 (1)

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

1986 (1)

1985 (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

1984 (1)

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

1983 (1)

H. J. Eichler, Opt. Commun. 45, 62 (1983).
[CrossRef]

Almeida, V. R.

Arndt, J.

C. Z. Tan and J. Arndt, J. Phys. Chem. Solids 61, 1315 (2000).
[CrossRef]

Baets, R.

Bogaerts, W.

Cocorullo, G.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

Dumon, P.

Eichler, H. J.

H. J. Eichler, Opt. Commun. 45, 62 (1983).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Kira, G.

Kuramochi, E.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2008).

Lipson, M.

Mitsugi, S.

Morthier, G.

Notomi, M.

Okada, Y.

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Priem, G.

Reano, R. M.

Rendina, I.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

Shinya, A.

Smith, S. D.

Sun, P.

Tan, C. Z.

C. Z. Tan and J. Arndt, J. Phys. Chem. Solids 61, 1315 (2000).
[CrossRef]

Tanabe, T.

Tokumaru, Y.

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

Van Thourhout, D.

Xu, Q.

Appl. Opt. (1)

Electron. Lett. (1)

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
[CrossRef]

J. Phys. Chem. Solids (1)

C. Z. Tan and J. Arndt, J. Phys. Chem. Solids 61, 1315 (2000).
[CrossRef]

Opt. Commun. (1)

H. J. Eichler, Opt. Commun. 45, 62 (1983).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (2)

D. R. Lide, Handbook of Chemistry and Physics (CRC, 2008).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-sectional schematic of free-standing silicon ring resonator. The dimensions of the silicon core and cladding are w 1 = 450   nm , h 1 = 250   nm , w 2 = 5.3 μ m , and h 2 = 2.1 μ m . The air gap width is g = 4 μ m .

Fig. 2
Fig. 2

Scanning electron micrograph of a free-standing silicon ring resonator. The ring is anchored to the substrate at the coupling region. The coupling gap width is 200 nm.

Fig. 3
Fig. 3

(a) Measured transmission spectra of an un released (not free-standing) ring resonator with input power as parameter. (b) Measured output power versus input power for a detuning wavelength of δ λ = 0.1   nm .

Fig. 4
Fig. 4

(a) Measured transmission spectra of a released (free-standing) ring resonator with input power as parameter. (b) Measured output power versus input power for a detuning wavelength of δ λ = 0.1   nm .

Fig. 5
Fig. 5

Measured 10%–90% response time of released ring resonator as the input power is transitioned across the (a) falling and (b) rising edges of the hysteresis loop.

Metrics