Abstract

We demonstrate a self-stabilization mechanism of a semiconductor saturable absorber mode-locked linear-cavity Yb-doped fiber laser using an intracavity photonic bandgap fiber. This mechanism relies on the spectral shift of the laser pulses to a spectral range of higher anomalous dispersion and higher loss of the photonic bandgap fiber, as a reaction to the intracavity power buildup. This, in particular, results in a smaller cavity loss for the stably mode-locked laser, as opposed to the Q-switched mode-locking scenario. The laser provides stable 39–49 pJ pulses of around 230 fs duration at 29 MHz repetition rate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 24, 1803 (2007).
    [CrossRef]
  2. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.
  3. J. Lægsgaard, J. Phys. B 41, 095401 (2008).
    [CrossRef]
  4. D. Turchinovich, X. Liu, and J. Lægsgaard, Opt. Express 16, 14004 (2008).
    [CrossRef] [PubMed]
  5. F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, Opt. Express 11, 3550 (2003).
    [CrossRef] [PubMed]
  6. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.
  7. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, Opt. Express 14, 6063 (2006).
    [CrossRef] [PubMed]
  8. A. Isomäki and O. G. Okhotnikov, Opt. Express 14, 4368 (2006).
    [CrossRef] [PubMed]
  9. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
    [CrossRef]
  10. J. Y. Lee and D. Y. Kim, Opt. Express 14, 11608 (2006).
    [CrossRef] [PubMed]
  11. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).
    [CrossRef]

2008

J. Lægsgaard, J. Phys. B 41, 095401 (2008).
[CrossRef]

D. Turchinovich, X. Liu, and J. Lægsgaard, Opt. Express 16, 14004 (2008).
[CrossRef] [PubMed]

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.

2007

2006

2005

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

2003

1997

1995

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Buckley, J.

Cho, G. C.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Chong, A.

Dong, L.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Fermann, M. E.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Hartl, I.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Haus, H. A.

S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Ilday, F. Ö.

Imeshev, G.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Ippen, E. P.

S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Isomäki, A.

Jespersen, K. G.

Keiding, S. R.

Kim, D. Y.

Kuznetsova, L.

Lægsgaard, J.

Lee, J. Y.

Liu, X.

Lyngsø, J. K.

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.

Mangan, B. J.

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.

Namiki, S.

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Nielsen, C. K.

Okhotnikov, O. G.

Renninger, W.

Roberts, P. J.

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Turchinovich, D.

Wise, F.

Wise, F. W.

Yu, C. X.

Zhou, S.

IEEE J. Quantum Electron.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. Lægsgaard, J. Phys. B 41, 095401 (2008).
[CrossRef]

Opt. Express

Other

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, in CLEO/QELS and PhAST (Optical Society of America, 2008), paper CThV1.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in CLEO/QELS and PhAST (Optical Society of America, 2005), paper CThG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Layout of the laser: HR, high-reflectivity broadband pigtailed mirror; WDM, 980/1030 wavelength division multiplexer; LD, single-mode pumping diode at 974 nm; PM PBGF, PM all-solid photonic bandgap fiber; SESAM, semiconductor saturable absorber mirror; PFC, 80/20 polarization filter coupler. (b) Laser pulse train at stable single-pulse ML operation.

Fig. 2
Fig. 2

Laser output power as a function of increasing pump power, indicating different mode-locking regimes. Dashed lines are linear fits to laser efficiency in stable and Q-switched mode-locking regimes.

Fig. 3
Fig. 3

(a) Laser output spectra in stable fundamental ML regime at variable pump power. (b) Transmittivity of PM PBGF and net cavity round-trip dispersion.

Fig. 4
Fig. 4

(a) Calculated output pulse energy depending on a cavity round-trip number. Solid line, wavelength-dependent cavity loss, corresponding to PBGF transmittivity. Dashed, dashed-dotted, and dotted curves, constant cavity losses of 0.71, 0.72, and 0.74 dB, respectively, introduced after 5000 round trips with PBGF cavity loss. (b) Calculated cavity loss as a function of output pulse energy—see text for details. (c) AC of the laser pulse, measured after 1 m PM SMF pigtail of the outcoupler (circles), and its Gaussian fit (solid curve).

Metrics