Abstract

A passively Q-switched ytterbium doped fiber laser has been demonstrated with a Cr4+:yttrium aluminum garnet saturable absorber and distributed stimulated Brillouin scattering. A linearly polarized output with 375  kW peak power and a pulse duration as short as 490 ps have been obtained. A theoretical model is developed to simulate passive Q switching with the stimulated Brillouin scattering, which shows good agreement with the experiment.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, and C. Ozkul, Opt. Lett. 27, 1294 (2002).
    [CrossRef]
  2. Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, G. Y. Zhang, and X. Y. Dong, Opt. Lett. 28, 537 (2003).
    [CrossRef] [PubMed]
  3. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef] [PubMed]
  4. A. A. Fotiadi, P. Megret, and M. Blondel, Opt. Lett. 29, 1078 (2004).
    [CrossRef] [PubMed]
  5. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, Opt. Lett. 23, 454 (1998).
    [CrossRef]
  6. Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, X. Y. Dong, J. L. He, and H. T. Wang, Opt. Lett. 29, 724 (2004).
    [CrossRef] [PubMed]
  7. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, and W. A. Clarkson, Opt. Lett. 27, 1980 (2002).
    [CrossRef]
  8. M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
    [CrossRef]
  9. J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, Opt. Express 15, 473 (2007).
    [CrossRef] [PubMed]
  10. V. N. Filippov, A. N. Starodumov, and A. V. Kir'yanov, Opt. Lett. 26, 343 (2001).
    [CrossRef]
  11. L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
    [CrossRef]
  12. Y. Wang and C. Q. Xu, Prog. Quantum Electron. 31, 131 (2007).
    [CrossRef]
  13. L. Pan, I. Utkin, and R. Fedosejevs, Opt. Express 16, 11858 (2008).
    [CrossRef] [PubMed]
  14. N. Andermahr and C. Fallnich, Opt. Express 16, 20038 (2008).
    [CrossRef] [PubMed]

2008

2007

J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, Opt. Express 15, 473 (2007).
[CrossRef] [PubMed]

L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
[CrossRef]

Y. Wang and C. Q. Xu, Prog. Quantum Electron. 31, 131 (2007).
[CrossRef]

2006

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

2004

2003

2002

2001

1998

1997

Aït-Ameur, K.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Andermahr, N.

Blondel, M.

Brunel, M.

Chardon, A. M.

Chartier, T.

Chen, Y. F.

Chen, Z. J.

Chernikov, S. V.

Clarkson, W. A.

Dong, X. Y.

Fallnich, C.

Fan, Y. X.

Fedosejevs, R.

L. Pan, I. Utkin, and R. Fedosejevs, Opt. Express 16, 11858 (2008).
[CrossRef] [PubMed]

L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
[CrossRef]

Filippov, V. N.

Fotiadi, A. A.

Gapontsev, V. P.

Gilles, H.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Girard, S.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Grudinin, A. B.

He, J. L.

Hideur, A.

Hu, S. L.

Huang, J. Y.

Kir'yanov, A. V.

Laroche, M.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, and W. A. Clarkson, Opt. Lett. 27, 1980 (2002).
[CrossRef]

Liang, H. C.

Lu, F. Y.

Lu, K. C.

Martel, G.

Megret, P.

Minelly, J. D.

Nilsson, J.

Ozkul, C.

Pan, L.

L. Pan, I. Utkin, and R. Fedosejevs, Opt. Express 16, 11858 (2008).
[CrossRef] [PubMed]

L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
[CrossRef]

Passilly, N.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Porta, J.

Salhi, M.

Shepherd, D. P.

Starodumov, A. N.

Su, K. W.

Taylor, J. R.

Utkin, I.

L. Pan, I. Utkin, and R. Fedosejevs, Opt. Express 16, 11858 (2008).
[CrossRef] [PubMed]

L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
[CrossRef]

Wang, H. J.

Wang, H. T.

Wang, Y.

Y. Wang and C. Q. Xu, Prog. Quantum Electron. 31, 131 (2007).
[CrossRef]

Xu, C. Q.

Y. Wang and C. Q. Xu, Prog. Quantum Electron. 31, 131 (2007).
[CrossRef]

Zhang, G. Y.

Zhu, Y.

IEEE Photon. Technol. Lett.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

L. Pan, I. Utkin, and R. Fedosejevs, IEEE Photon. Technol. Lett. 19, 1979 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

Y. Wang and C. Q. Xu, Prog. Quantum Electron. 31, 131 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment setup.

Fig. 2
Fig. 2

Laser output power and pulse repetition rate versus pump power. Inset, laser spectrum measured at a pump power of 2.9 W.

Fig. 3
Fig. 3

Observed (a) pulse train with a pulse repetition rate of 2.6 kHz, (b) pulse shape, and (c) details of the main pulse at a pump power of 4.1 W.

Fig. 4
Fig. 4

Simulated SBS pulses; the corresponding initial population inversion profiles are shown on the right side: (a) dashed line profile for the first Q-switched SBS pulse at the start of the pumping; (b) solid line profile after steady state pumping is reached. Zero position is at the HR end of the fiber.

Tables (1)

Tables Icon

Table 1 Values of Parameters in Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P p x + 1 v p P p t = Γ p [ σ e p N 2 σ α p N 1 ] P p α p P p ,
N 2 t = Γ p λ p h c A co [ σ α p N 1 σ e p N 2 ] P p k Γ k λ k h c A co g k ( | E k + | 2 + | E k | 2 ) N 2 τ ,
± E k ± x + 1 v k E k ± t = Γ k g k 2 E k ± + g B 2 A eff ( ρ k 1 E k 1 ρ k ± E k + 1 ) α k 2 E k ± ,
τ B ρ k ± t + ρ k ± = E k ± E k + 1 + f k ± ,

Metrics