Abstract

Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
    [CrossRef]
  2. H. Lin, T. Wang, G. Wilson, and T. Mossberg, Opt. Lett. 20, 1658 (1995).
    [CrossRef] [PubMed]
  3. X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, and S. Kröll, Opt. Lett. 25, 945 (2000).
    [CrossRef]
  4. Z. W. Barber, M. Tian, R. R. Reibel, and W. R. Babbit, Opt. Express 10, 1145 (2002).
    [PubMed]
  5. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
    [CrossRef] [PubMed]
  6. G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
    [CrossRef] [PubMed]
  7. G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
    [CrossRef] [PubMed]
  8. M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
    [CrossRef] [PubMed]
  9. J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
    [CrossRef]
  10. G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
    [CrossRef] [PubMed]
  11. G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
    [CrossRef]
  12. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
    [CrossRef]
  13. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
    [CrossRef] [PubMed]
  14. U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
    [CrossRef] [PubMed]
  15. R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
    [CrossRef]

2009 (4)

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
[CrossRef]

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[CrossRef]

2008 (4)

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

2007 (2)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

2006 (1)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

2004 (1)

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

2002 (1)

2000 (1)

1995 (1)

Afzelius, M.

Alexander, A. L.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Babbit, W. R.

Babbitt, W. R.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Barber, Z. W.

Bloch, I.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Buchler, B. C.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

Campbell, G.

G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
[CrossRef]

Chang, T.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Cole, Z.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Davidson, N.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Garner, S. R.

R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[CrossRef]

Gorshkov, A. V.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Gustafsson, U.

Hau, L. V.

R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[CrossRef]

Hétet, G.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

Hosseini, M.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

Kröll, S.

Kuhr, S.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Lam, P. K.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

Lin, H.

Longdell, J. J.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Lvovsky, A.

G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
[CrossRef]

Manson, N. B.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Merkel, K. D.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Mohan, R. K.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Mossberg, T.

Novikova, I.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Oblak, D.

Ohlsson, N.

Olson, A.

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Ordog, A.

G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
[CrossRef]

Phillips, D. F.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Pugatch, R.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Reibel, R. R.

Schnorrberger, U.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Sellars, M. J.

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Sørensen, A. S.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Sparkes, B. M.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

G. Hétet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
[CrossRef] [PubMed]

Thompson, J.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Tian, M.

Trotzky, S.

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

Walsworth, R. L.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

Wang, T.

Wang, X.

Wilson, G.

Zhang, R.

R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[CrossRef]

J. Lumin. (2)

K. D. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, J. Lumin. 127, 94 (2007).
[CrossRef]

Nature (1)

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Nature 461, 241 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

G. Campbell, A. Ordog, and A. Lvovsky, New J. Phys. 11, 103021 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

J. J. Longdell, G. Hétet, P. K. Lam, and M. J. Sellars, Phys. Rev. A 78, 032337 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Phys. Rev. Lett. 101, 203601 (2008).
[CrossRef] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
[CrossRef] [PubMed]

U. Schnorrberger, J. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
[CrossRef] [PubMed]

R. Zhang, S. R. Garner, and L. V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Atomic storage medium with an atomic frequency spectrum ( η z ) . The bandwidth of the atomic broadening covers the input modulated pulse spectrum. (b) The Fourier spectrum of the input pulse is absorbed and stored as an atomic polarization. (c) To release the pulse, η is switched to η at time τ, and the stored light emerges at time 2 τ .

Fig. 2
Fig. 2

The real part of the optical field when (a) δ = 0   MHz , (b) δ = 0.5   MHz . (c) Fourier spectra of the output with δ = 1 , −0.5, 0, 0.5, and 1 MHz for Gaussian inputs pulses. The effective optical depth in these simulations is g N / η = 3.75 .

Fig. 3
Fig. 3

(a) Modulated input pulse (i) and recalled pulses showing split sideband (ii) and carrier (iii) light with 3× magnification. (b) Atomic polarization in the ( t , z ) plane. In the red (green) shaded regions the atomic frequency gradient is inverted at 60 μ s ( 70 μ s ) . (c) Spatial Fourier spectrum of α. (d) Modulated input pulse (i), recalled pulses (ii) showing three separate frequency components with 3× magnification. (e) Atomic polarization in the ( t , z ) plane. The inversion of η ( t , z ) occurs along the red line given by 60 z 6 t 330 = 0 . (f) Spatial Fourier spectrum of α. The effective optical depth in these simulations is g N / η = 3.75 .

Fig. 4
Fig. 4

(a) (i) Pulses of equal energy but with widths 3.2 and 1.6 μ s and a frequency difference of 3 / π MHz enter the memory at separate times. (ii) They are recalled with identical pulse width to give 100% interference visibility. (b) Normal modes of the two pulses. The effective optical depth in these simulations is g N / η = 3.75 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t α ( t , z ) = i η ( t , z ) α ( t , z ) + i g E ( t , z ) ,
z E ( t , z ) = i g N α ( t , z ) .

Metrics