Abstract

We present an all-fiber tunable bandpass filter based on a combination of a force-induced long-period fiber grating and a fiber coil made along a double cladding fiber. The transmission wavelength can be tuned to be in a range of more than 100 nm by changing the grating period mechanically. We can control the transmission amplitude of the bandpass filter by adjusting the periodic force on the double cladding fiber. The ambient temperature causes a positive shift in the transmission wavelength. Such a device is useful for tunable laser applications and fiber-optic sensors.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Hajime Sakata, Keisuke Nishio, and Marie Ichikawa, "Tunable bandpass filter based on force-induced long-period fiber grating in a double cladding fiber: erratum," Opt. Lett. 35, 1843-1843 (2010)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-35-11-1843

References

  • View by:
  • |
  • |
  • |

  1. D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
    [CrossRef]
  2. S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
    [CrossRef]
  3. O. Deparis, R. Kiyan, O. Pottiez, M. Blondel, I. G. Korolev, S. A. Vasiliev, and E. M. Dianov, Opt. Lett. 26, 1239 (2001).
    [CrossRef]
  4. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, Opt. Lett. 25, 710 (2000).
    [CrossRef]
  5. I. K. Hwang, S. H. Yun, and B. Y. Kim, Opt. Lett. 24, 1263 (1999).
    [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  7. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  8. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]

2005 (1)

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

2003 (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

1998 (1)

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Blondel, M.

Choi, S.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Deparis, O.

Dianov, E. M.

Digonnet, M. J. F.

Eom, T. J.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Hwang, I. K.

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Jung, Y.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Kim, B. Y.

Kino, G. S.

Kiyan, R.

Korolev, I. G.

Lee, B. H.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Lee, J. W.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Oh, K.

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

Pottiez, O.

Savin, S.

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Vasiliev, S. A.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Yun, S. H.

IEEE Photon. Technol. Lett. (2)

D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998).
[CrossRef]

S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 17, 115 (2005).
[CrossRef]

J. Lightwave Technol. (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for measuring the transmission spectra of the all-fiber BPF under various pressures and temperatures.

Fig. 2
Fig. 2

Spectral response of the fabricated BPF with a grating period of 560 μ m measured with the force per unit length along the fiber increasing from 0 to 3.3 N/cm.

Fig. 3
Fig. 3

Transmission amplitude and peak wavelength of the BPF as functions of applied force.

Fig. 4
Fig. 4

Wavelength shift of the BPF with respect to variation in grating period. Solid lines are linear fittings of experimental data shown by symbols.

Fig. 5
Fig. 5

Transmission amplitude and peak wavelength of the BPF as functions of temperature for grating periods of 589 and 600 μ m .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = ( n core n clad ( m ) ) Λ ,
Δ λ m = 0.8 λ m 2 L ( n core n clad ( m ) ) ,
d λ m d T Λ ( d n core d T d n clad ( m ) d T ) .

Metrics