Abstract

Resolution of a few tens of nanometers has been achieved in fluorescence microscopy with photoswitchable molecules. However, for thick samples, the background brought by the crosstalk of unwanted on-state molecules is nonnegligible. Now we present a background suppression method by using two axial standing waves generated by the interference of two activation beams with the same phases and two deactivation beams with the opposite phases. With spatially incoherent illumination, most activated molecules are located in a thin layer. The performance of such method is simulated with the known photoswitching characteristic of Cy5. With suitable parameters, the thickness of the layer can reach 39nm (FWHM).

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Comparison between SOFI and STORM

Stefan Geissbuehler, Claudio Dellagiacoma, and Theo Lasser
Biomed. Opt. Express 2(3) 408-420 (2011)

Measuring localization performance of super-resolution algorithms on very active samples

Steve Wolter, Ulrike Endesfelder, Sebastian van de Linde, Mike Heilemann, and Markus Sauer
Opt. Express 19(8) 7020-7033 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription