Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Background suppression by axially selective activation in single-molecule localization microscopy

Not Accessible

Your library or personal account may give you access

Abstract

Resolution of a few tens of nanometers has been achieved in fluorescence microscopy with photoswitchable molecules. However, for thick samples, the background brought by the crosstalk of unwanted on-state molecules is nonnegligible. Now we present a background suppression method by using two axial standing waves generated by the interference of two activation beams with the same phases and two deactivation beams with the opposite phases. With spatially incoherent illumination, most activated molecules are located in a thin layer. The performance of such method is simulated with the known photoswitching characteristic of Cy5. With suitable parameters, the thickness of the layer can reach 39nm (FWHM).

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast Fourier domain localization algorithm of a single molecule with nanometer precision

Bin Yu, Danni Chen, Junle Qu, and Hanben Niu
Opt. Lett. 36(22) 4317-4319 (2011)

Wavelet analysis for single molecule localization microscopy

I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, and J.B. Sibarita
Opt. Express 20(3) 2081-2095 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved