Abstract

We report the first (to our knowledge) experimental observation of resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass film at 1550nm telecommunication wavelength. The measured photosensitivity threshold is <0.1GWcm2, and a photoinduced refractive index increase as large as 0.016 is observed. The photosensitive process is athermal; further, we confirm the absence of two-photon absorption in As2S3, suggesting that defect absorption accounts for the energy transfer from photons to glass network. Besides its potential application for reconfigurable photonics circuit, such photosensitivity is also an important design consideration for nonlinear optical devices using chalcogenide glasses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. van Popta, R. DeCorby, C. Haugen, T. Robinson, J. McMullin, D. Tonchev, and S. Kasap, Opt. Express 10, 639 (2002).
    [PubMed]
  2. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, Opt. Express 16, 10565 (2008).
    [CrossRef] [PubMed]
  3. P. Lucas, J. Phys. Condens. Matter 18, 5629 (2006).
    [CrossRef]
  4. N. Hô, M. Phillips, H. Qiao, P. Allen, K. Krishnaswami, B. Riley, T. Myers, and N. Anheier, Opt. Lett. 31, 1860 (2006).
    [CrossRef] [PubMed]
  5. M. Lee, C. Grillet, C. Smith, D. Moss, B. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. Lee, Opt. Express 15, 1277 (2007).
    [CrossRef] [PubMed]
  6. A. Saliminia, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, J. Lightwave Technol. 17, 837 (1999).
    [CrossRef]
  7. N. Hô, J. Laniel, R. Vallée, and A. Villeneuve, Opt. Lett. 28, 965 (2003).
    [CrossRef] [PubMed]
  8. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, Opt. Lett. 33, 761 (2008).
    [CrossRef] [PubMed]
  9. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, Opt. Express 15, 2307 (2007).
    [CrossRef] [PubMed]
  10. J. Hu, V. Tarasov, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, Opt. Express 15, 11798 (2007).
    [CrossRef] [PubMed]
  11. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, Opt. Lett. 33, 2500 (2008).
    [CrossRef] [PubMed]
  12. A. Saliminia, T. Galstian, A. Villeneuve, and K. Le Foulgoc, J. Opt. Soc. Am. B 17, 1343 (2000).
    [CrossRef]
  13. D. Broaddus, M. Foster, I. Agha, J. Robinson, M. Lipson, and A. Gaeta, Opt. Express 17, 5998 (2009).
    [CrossRef] [PubMed]
  14. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, J. Lightwave Technol. 27, 5240 (2009).
    [CrossRef]

2009

2008

2007

2006

2003

2002

2000

1999

Agarwal, A.

Agha, I.

Allen, P.

Anheier, N.

Broaddus, D.

Carlie, N.

Chen, G.

DeCorby, R.

Eggleton, B.

Feng, N.

Foster, M.

Freeman, D.

Gaeta, A.

Galstian, T.

Galstian, T. V.

Ganjoo, A.

Grillet, C.

Haugen, C.

Hô, N.

Hu, J.

Jain, H.

Kasap, S.

Kimerling, L.

Kimerling, L. C.

Krishnaswami, K.

Laniel, J.

LaRochelle, S.

Le Foulgoc, K.

Lee, M.

Lee, Y.

Lipson, M.

Lucas, P.

P. Lucas, J. Phys. Condens. Matter 18, 5629 (2006).
[CrossRef]

Luther-Davies, B.

Madden, S.

McMullin, J.

Moss, D.

Myers, T.

Petit, L.

Phillips, M.

Qiao, H.

Richardson, K.

Riley, B.

Robinson, J.

Robinson, T.

Rode, A.

Ruan, Y.

Saliminia, A.

Smith, C.

Tarasov, V.

Tonchev, D.

Vallée, R.

van Popta, A.

Villeneuve, A.

Xu, Y.

Yang, G.

Zeng, H.

Zhao, D.

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

P. Lucas, J. Phys. Condens. Matter 18, 5629 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectra of an As 2 S 3 microdisk resonator near a resonant peak measured at different power levels; the arrows indicate the temporal sequence of measurements. The resonant peak redshift after high-power measurement manifests the photosensitivity effect, and the peak shape distortion at high power is a consequence of thermo-optic cavity instability.

Fig. 2
Fig. 2

Schematic illustration of the pump–probe measurement setup used to characterize cavity-enhanced photosensitivity in As 2 S 3 glass.

Fig. 3
Fig. 3

Transmission spectra of As 2 S 3 microdisks measured using a low-power probe beam in a pump–probe setting (a) when the pump light is off-resonance; (b) when the pump light is locked with microdisk resonant wavelength, cavity-enhanced photosensitivity leads to the nontransient redshift of resonance, and the spectra with different pump power are offset vertically for clarity.

Fig. 4
Fig. 4

Nonlinear absorption calculated from the measured microdisk transmission spectra as a function of circulating power in the resonator; the lines indicate the measurement accuracy.

Tables (1)

Tables Icon

Table 1 Linear Optical Parameters of the As 2 S 3 Microdisk Resonators Used in This Study

Metrics