Abstract

The spectral coherence of a light wave on scattering is closely related with the properties of the scattering medium. Within the accuracy of the first-order Born approximation, we present the condition for the invariance of the spectral degree of the coherence of a spatially coherent scalar plane light wave on scattering, and we discuss several typical examples on weak scattering.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989).
    [CrossRef]
  2. T. Visser, D. Fischer, and E. Wolf, J. Opt. Soc. Am. A 23, 1631 (2006).
    [CrossRef]
  3. T. Shirai and T. Asakura, J. Opt. Soc. Am. A 12, 1354 (1995).
    [CrossRef]
  4. T. Shirai and T. Asakura, Opt. Commun. 123, 234 (1996).
    [CrossRef]
  5. A. Dogariu and E. Wolf, Opt. Lett. 23, 1340 (1998).
    [CrossRef]
  6. S. Sahin and O. Korotkova, Phys. Rev. A 78, 063815 (2008).
    [CrossRef]
  7. S. Sahin and O. Korotkova, Opt. Lett. 34, 1762 (2009).
    [CrossRef] [PubMed]
  8. G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
    [CrossRef]
  9. D. Zhao, O. Korotkova, and E. Wolf, Opt. Lett. 32, 3483 (2007).
    [CrossRef] [PubMed]
  10. M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
    [CrossRef] [PubMed]
  11. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

2009

S. Sahin and O. Korotkova, Opt. Lett. 34, 1762 (2009).
[CrossRef] [PubMed]

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

2008

S. Sahin and O. Korotkova, Phys. Rev. A 78, 063815 (2008).
[CrossRef]

2007

2006

1999

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

1998

1996

T. Shirai and T. Asakura, Opt. Commun. 123, 234 (1996).
[CrossRef]

1995

1989

Asakura, T.

T. Shirai and T. Asakura, Opt. Commun. 123, 234 (1996).
[CrossRef]

T. Shirai and T. Asakura, J. Opt. Soc. Am. A 12, 1354 (1995).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Dogariu, A.

Fischer, D.

Fischer, D. G.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

Foley, J. T.

Gbur, G.

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

Gori, F.

Korotkova, O.

Lahiri, M.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

Sahin, S.

S. Sahin and O. Korotkova, Opt. Lett. 34, 1762 (2009).
[CrossRef] [PubMed]

S. Sahin and O. Korotkova, Phys. Rev. A 78, 063815 (2008).
[CrossRef]

Shirai, T.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

T. Shirai and T. Asakura, Opt. Commun. 123, 234 (1996).
[CrossRef]

T. Shirai and T. Asakura, J. Opt. Soc. Am. A 12, 1354 (1995).
[CrossRef]

Visser, T.

Wolf, E.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

D. Zhao, O. Korotkova, and E. Wolf, Opt. Lett. 32, 3483 (2007).
[CrossRef] [PubMed]

T. Visser, D. Fischer, and E. Wolf, J. Opt. Soc. Am. A 23, 1631 (2006).
[CrossRef]

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

A. Dogariu and E. Wolf, Opt. Lett. 23, 1340 (1998).
[CrossRef]

E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989).
[CrossRef]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Zhao, D.

J. Opt. Soc. Am. A

Opt. Commun.

T. Shirai and T. Asakura, Opt. Commun. 123, 234 (1996).
[CrossRef]

G. Gbur and E. Wolf, Opt. Commun. 168, 39 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S. Sahin and O. Korotkova, Phys. Rev. A 78, 063815 (2008).
[CrossRef]

Phys. Rev. Lett.

M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, Phys. Rev. Lett. 102, 123901 (2009).
[CrossRef] [PubMed]

Other

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Illustration of the notation.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

W ( i ) ( r 1 , r 2 , s 0 ; ω ) = S ( i ) ( ω ) exp ( i k s 0 ( r 2 r 1 ) ) ,
μ ( Q 1 , Q 2 , ω ) = W ( Q 1 , Q 2 , ω ) S ( Q 1 ; ω ) S ( Q 2 ; ω ) ,
μ ( i ) ( r 1 , r 2 , s 0 ; ω ) = exp ( i k s 0 ( r 2 r 1 ) ) .
C F ( r 1 , r 2 , ω ) = F ( r 1 , ω ) F ( r 2 , ω ) ,
W ( S ) ( r s 1 , r s 2 , s 0 ; ω ) = S ( i ) ( ω ) r 2 C F ( r 1 , r 2 , ω ) exp [ i ( K 2 r 2 K 1 r 1 ) ] d 3 r 1 d 3 r 2 ,
K 1 = k ( s 1 s 0 ) ,     K 2 = k ( s 2 s 0 ) .
S ( S ) ( r s , s 0 ; ω ) = S ( i ) ( ω ) r 2 C F ( r 1 , r 2 , ω ) exp [ i K ( r 2 r 1 ) ] d 3 r 1 d 3 r 2 ,
μ ( S ) ( r s 1 , r s 2 , s 0 ; ω ) = C ̃ F ( K 1 , K 2 , ω ) C ̃ F ( K 1 , K 1 , ω ) C ̃ F ( K 2 , K 2 , ω ) ,
C ̃ F ( K 1 , K 2 , ω ) = C F ( r 1 , r 2 , ω ) exp [ i ( K 2 r 2 K 1 r 1 ) ] d 3 r 1 d 3 r 2
C ̃ F ( K 1 , K 2 , ω ) = I F ( K 1 , ω ) I F ( K 2 , ω ) μ F ( K 1 , K 2 , ω ) ,
μ ( S ) ( r s 1 , r s 2 , s 0 , ω ) = μ F ( K 1 , K 2 , ω ) .
| C ̃ F ( K 1 , K 2 , ω ) | = I F ( K 1 , ω ) I F ( K 2 , ω ) .
C F ( r 1 , r 2 , ω ) = F ( r 1 , ω ) F ( r 2 , ω ) .
C ̃ F ( K 1 , K 2 , ω ) = F ̃ ( K 1 , ω ) F ̃ ( K 2 , ω ) ,
F ̃ ( K , ω ) = F ( r , ω ) exp [ i ( K r ) ] d 3 r
C ̃ F ( K 1 , K 2 , ω ) = ( 2 π σ R σ r ) 3 C 0   exp [ 1 2 σ R 2 ( K 2 K 1 ) 2 ] exp [ 1 2 σ r 2 ( K 1 + K 2 2 ) 2 ] ,
μ F ( K 1 , K 2 , ω ) = exp [ ( 1 2 σ R 2 1 8 σ r 2 ) ( K 2 K 1 ) 2 ] .
C F ( r 1 , r 2 , ω ) = F ( r 1 , ω ) F ( r 2 , ω ) ,
F ( r , ω ) = m = 1 L f ( r r m , ω )
C ̃ F ( K 1 , K 2 , ω ) = F ̃ ( K 1 , ω ) F ̃ ( K 2 , ω ) ,
F ̃ ( K , ω ) = m = 1 L U ̃ ( K , ω ) exp [ i K r m ]

Metrics