Abstract

The self-mixing (SM) laser sensing technique allows for a simple, self-aligned, and robust system for measuring velocity. Low-cost blue emitting GaN laser diodes have recently become available owing to the high volume requirements for Blu-ray Disc devices such as high-definition video players and gaming consoles. These GaN lasers have a significantly shorter wavelength (around 405nm) compared with other semiconductor lasers (generally around 800nm for SM sensors). Therefore, if used in SM flow sensors, they allow measuring of flow rates that would otherwise be too slow to measure. In this Letter we report what we believe to be the world’s first SM flow measurement system based on a blue emitting semiconductor laser, demonstrating the ability to measure flow rates down to 26μms.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. M. de Mul, M. H. Koelink, A. J. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, Appl. Opt. 31, 5844 (1992).
    [Crossref]
  2. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, Appl. Opt. 25, 1417 (1986).
    [Crossref] [PubMed]
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
    [Crossref]
  4. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
    [Crossref]
  5. R. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991).
    [Crossref]
  6. M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
    [Crossref]
  7. C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

1996 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

1992 (1)

1991 (1)

R. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991).
[Crossref]

1987 (1)

M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
[Crossref]

1986 (1)

1972 (1)

C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

Aarnoudse, J. G.

Adrian, R.

R. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991).
[Crossref]

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

Benedek, G.

C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

Dassel, A. C. M.

de Mul, F. F. M.

Funaki, M.

M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
[Crossref]

Graaff, R.

Greve, J.

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Koelink, M. H.

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

Mochizuki, A.

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Nakaya, N.

M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
[Crossref]

Riva, C.

C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

Ross, B.

C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Shinohara, S.

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Sumi, M.

Weijers, A. J.

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

Yamada, M.

M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Yoshida, H.

Annu. Rev. Fluid Mech. (1)

R. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996).
[Crossref]

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Yamada, N. Nakaya, and M. Funaki, IEEE J. Quantum Electron. 23, 1297 (1987).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

C. Riva, B. Ross, and G. Benedek, Invest. Ophthalmol. Visual Sci. 11, 936 (1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser light-current and current-voltage characteristics (main plot) and the multimode emission spectrum (inset). Note the significant level of spontaneous emission below the lasing threshold.

Fig. 2
Fig. 2

Experimental setup for measuring the SM velocity signal. The laser emission strikes the disc below the center of rotation, and v is the velocity vector at this point. The monitor photodiode variations are amplified and digitized before being processed in software running on a computer.

Fig. 3
Fig. 3

Example Doppler signal spectrum showing how the SNR is determined. The dotted line shows the noise floor determined by fitting an exponential function plus a constant over regions A and C to the measured spectrum (circles). The signal peak is fitted to a combination of a Gaussian function and the obtained noise floor in the region B (chain line). The SNR is the difference between the signal peak level and the noise floor below (in this case, 26.7 dB ).

Fig. 4
Fig. 4

Plots of SNR versus laser bias currents for the blue laser (dashed curve) and IR laser (solid curve) SM signals with the rotating disc target. The IR laser has an SNR advantage of approximately 5 dB over the blue emitting laser.

Fig. 5
Fig. 5

Averaged SM spectra for the flow experiment. Results (a)–(c) are for the IR laser, and results (d)–(f) are for the blue laser. The corner frequency for each of the signals is indicated. The maximum flow rate for the results in (a) and (d) was 25.9 μ m s , the rate for (b) and (e) was 51.8 μ m s , and the rate for (c) and (f) was 77.7 μ m s .

Tables (1)

Tables Icon

Table 1 Calculated and Measured Maximum Frequency Components for Different Flow Velocities for the IR and Blue Lasers a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v m = f m λ 2 cos θ ,
PSD ( f ) = { a f b + c + g f + e if f < f m a f b + c + d [ f f m + ( d g f + e ) 1 h ] h otherwise ,

Metrics