Abstract

We show that a fiber-optics architecture conventionally used for microwave photonic filtering can implement a time-spectrum convolution (TSC) process of general interest for a wide range of fundamental optical signal processing and analysis operations. This process is practically implemented by temporally modulating a specially filtered broadband incoherent light source followed by propagation through a suitable linear dispersive medium. The TSC concept allows the time-domain realization of fundamental analog processing operations over both temporal and spectral intensity waveforms. Three particular, relevant signal-processing operations are proposed and experimentally demonstrated here to illustrate the broad potential of application of the TSC concept, namely time-integration, spectrum-integration, and time-frequency correlation of discrete binary codes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dorrer, J. Opt. Soc. Am. B 21, 1417 (2004).
    [CrossRef]
  2. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005).
    [CrossRef]
  3. V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).
  4. C. Dorrer, Opt. Express 17, 3341 (2009).
    [CrossRef] [PubMed]
  5. Y. Park and J. Azaña, Opt. Lett. 34, 1156 (2009).
    [CrossRef] [PubMed]
  6. J. Azaña, Opt. Lett. 33, (2008).
    [PubMed]
  7. F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
    [CrossRef]

2009 (2)

2008 (2)

J. Azaña, Opt. Lett. 33, (2008).
[PubMed]

V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).

2005 (1)

2004 (1)

1989 (1)

F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
[CrossRef]

Andrés, P.

V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).

Azaña, J.

Capmany, J.

Chung, F. R. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
[CrossRef]

Dorrer, C.

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).

Ortega, B.

Park, Y.

Pastor, D.

Salehi, J. A.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
[CrossRef]

Sales, S.

Torres-Company, V.

V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).

Wei, V. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
[CrossRef]

IEEE Trans. Inf. Theory (1)

F. R. K. Chung, J. A. Salehi, and V. K. Wei, IEEE Trans. Inf. Theory 35, 595 (1989).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

V. Torres-Company, J. Lancis, and P. Andrés, Opt. Commun. 281, 1438 (2008).

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the TSC process.

Fig. 2
Fig. 2

Optically processed cumulative integration (solid curve) of (a) temporal and (b) spectral intensity waveforms, where the corresponding numerical integrations are shown with dots. The measured temporal and spectral intensity waveforms are shown in the corresponding insets on the right side and the left sides.

Fig. 3
Fig. 3

Discrete time-frequency correlation experiments. (a) Schematic of the experimental setup. (b) Measured spectrum representing the 13 -bit code [1-3-8]. Modulated temporal waveforms corresponding to the 13 -bit time codes (c) [6-11-13] (inverted replica of the code [1-3-8]) and (d) [1-2-5] (selected orthogonal code to [1-3-8]). (e) Measured output temporal waveforms for the input time code (c) (autocorrelation) and (d) (cross-correlation).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) exp [ j r ( ω ) ] m chirped ( t τ g ( ω ) ) exp [ j ω t ] ,
I out ( t ) 1 | Φ ̈ | + d t S ( t Φ ̈ ) | m ( t t ) | 2 S ( t Φ ̈ ) | m ( t ) | 2 ,

Metrics