Abstract

We introduce, analyze, and experimentally demonstrate a compact semiconductor-based scheme for a femtosecond-scale partial fourth-order coherence g(4) measurements. The scheme is based on a start-stop photon-counting Hanbury Brown and Twiss (HBT) interferometry of an upconversion-based Michelson-interferometer autocorrelation. The experimental realization employs second-harmonic generation in a semiconductor quantum-well structure, which may be further integrated with the HBT setup as a miniature photonic circuit, allowing compact characterization devices for photon-pair statistics in quantum photonics and quantum information processing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription