Abstract

We propose a microwave photonic filter based on circulating a cladding mode in a fiber ring resonator, where the cladding mode is injected into and extracted from the resonator with a pair of matching long-period fiber gratings (LPFGs). The filter has a compact configuration and allows the frequency spacing and the notch depth to be tuned easily. The use of LPFGs also provides the capability of wavelength selection and tuning. Using a standard single-mode fiber and a pair of CO2 laser-written LPFGs, we demonstrate a filter with a frequency spacing of 1.3GHz and a notch depth of 17dB. Our experimental results agree well with theoretical calculations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  3. J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
    [CrossRef]
  4. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [CrossRef] [PubMed]
  5. W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
    [CrossRef]
  6. M. Sumetsky, J. Lightwave Technol. 26, 21 (2008).
    [CrossRef]
  7. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, J. Lightwave Technol. 22, 1358 (2004).
    [CrossRef]
  8. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, J. Lightwave Technol. 27, 857 (2009).
    [CrossRef]
  9. R. Slavík, IEEE Photon. Technol. Lett. 18, 1705 (2006).
    [CrossRef]

2009 (2)

2008 (1)

2006 (2)

2004 (1)

2001 (1)

W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
[CrossRef]

1982 (2)

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
[CrossRef] [PubMed]

Bennion, I.

W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
[CrossRef]

Bowers, J. E.

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

Capmany, J.

Chan, F. Y. M.

Chiang, K. S.

Chodorow, M.

Lee, H. W.

Liu, Y.

Newton, S. A.

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

Ng, M. N.

Ortega, B.

Pastor, D.

Rao, Y. J.

Shaw, H. J.

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
[CrossRef] [PubMed]

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

Slavík, R.

R. Slavík, IEEE Photon. Technol. Lett. 18, 1705 (2006).
[CrossRef]

Sorin, W. V.

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

Stokes, L. F.

Sumetsky, M.

Williams, J. A. R.

W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
[CrossRef]

Yao, J. P.

Zhang, W.

W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
[CrossRef]

Zhu, T.

Electron. Lett. (1)

J. E. Bowers, S. A. Newton, W. V. Sorin, and H. J. Shaw, Electron. Lett. 18, 110 (1982).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

W. Zhang, J. A. R. Williams, and I. Bennion, IEEE Microw. Wirel. Compon. Lett. 11, 217 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Slavík, IEEE Photon. Technol. Lett. 18, 1705 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed fiber ring resonator and (b) block diagram of the experimental setup for the characterization of the resonator.

Fig. 2
Fig. 2

Transmission spectra of the two LPFGs used in the experiments.

Fig. 3
Fig. 3

Measured (dots) and calculated (solid) normalized frequency responses of a microwave photonic filter that has a loop length of 362 mm .

Fig. 4
Fig. 4

Cladding-mode fiber ring resonator that is more compact, where the entire fiber loop is placed in a groove with part of it coiled up to achieve self-coupling.

Fig. 5
Fig. 5

Measured (dots) and calculated (solid) normalized frequency responses of a microwave photonic filter that has a loop length of 160 mm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 4 P 1 = ( 1 γ 0 ) 2 [ K 2 + σ 4 ( 1 2 K ) 2 + 2 K σ 2 ( 1 2 K ) cos ( β L ) 1 + σ 4 K 2 2 σ 2 K cos ( β L ) ] ,
Δ υ = FSR π arccos [ ( 1 + σ 4 K 2 ) C K 2 σ 4 ( 1 2 K ) 2 2 σ 2 K C 2 K σ 2 ( 2 K 1 ) ] ,

Metrics