Abstract

We present a method for fast reconstruction in flourescence optical tomography with very large data sets. In recent reports, CCD cameras at multiple positions have been used to collect optical measurements, producing more than 107 data samples. This makes storage of the full system Jacobian infeasible, and so data are usually subsampled. The method reported here allows use of the full data set, via image compression methods, and explicit construction of the (small) Jacobian, meaning optimal inversion methods can be applied, and thus leading to very fast reconstruction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge and J. Schotland, Inverse Probl. 25, 123010 (2009).
    [CrossRef]
  2. J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
    [CrossRef]
  3. V. Markel and J. C. Schotland, J. Opt. Soc. Am. A 18, 1336 (2001).
    [CrossRef]
  4. V. Markel, J. O'Sullivan, and J. Schotland, J. Opt. Soc. Am. A 20, 903 (2003).
    [CrossRef]
  5. V. Markel and J. Schotland, Phys. Rev. E 70, 056616 (2004).
    [CrossRef]
  6. S. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, Opt. Express 16, 5048 (2008).
    [CrossRef] [PubMed]
  7. J. Ripoll, Opt. Lett. 35, 688 (2010).
    [CrossRef] [PubMed]
  8. A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, Opt. Express 17, 3042 (2009).
    [CrossRef]
  9. T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
    [CrossRef] [PubMed]
  10. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
    [CrossRef] [PubMed]
  11. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
    [CrossRef] [PubMed]
  12. M. Segal and K. Akeley, http://www.opengl.org/registry/doc/glspec32.core.20091207.pdf (2009).
  13. I. Daubechies, CBMS Series 61 (SIAM, 1992), p. 146.
  14. A. Bassi, C. D'Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, Opt. Lett. 34, 2156 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

2008 (2)

2007 (1)

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

2004 (1)

V. Markel and J. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

2003 (2)

V. Markel, J. O'Sullivan, and J. Schotland, J. Opt. Soc. Am. A 20, 903 (2003).
[CrossRef]

J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
[CrossRef]

2001 (1)

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Akeley, K.

M. Segal and K. Akeley, http://www.opengl.org/registry/doc/glspec32.core.20091207.pdf (2009).

Andersson-Engels, S.

Arridge, S. R.

Axelsson, J.

Bassi, A.

Chatziioannou, A. F.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

Cubeddu, R.

D'Andrea, C.

Daubechies, I.

I. Daubechies, CBMS Series 61 (SIAM, 1992), p. 146.

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Konecky, S.

Lasser, T.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
[CrossRef] [PubMed]

Leahy, R. M.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

Lee, K.

Markel, V.

Ntziachristos, V.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
[CrossRef] [PubMed]

J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
[CrossRef]

O'Sullivan, J.

Panasyuk, G. Y.

Ripoll, J.

J. Ripoll, Opt. Lett. 35, 688 (2010).
[CrossRef] [PubMed]

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
[CrossRef] [PubMed]

J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
[CrossRef]

Schotland, J.

S. R. Arridge and J. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

V. Markel and J. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

V. Markel, J. O'Sullivan, and J. Schotland, J. Opt. Soc. Am. A 20, 903 (2003).
[CrossRef]

Schotland, J. C.

Schultz, R.

J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
[CrossRef]

Schweiger, M.

Segal, M.

M. Segal and K. Akeley, http://www.opengl.org/registry/doc/glspec32.core.20091207.pdf (2009).

Soubret, A.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
[CrossRef] [PubMed]

Stout, D.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

Svenmarker, P.

Valentini, G.

Yodh, A. G.

Zacharopoulos, A. D.

IEEE Trans. Med. Imaging (1)

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 27, 188 (2008).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge and J. Schotland, Inverse Probl. 25, 123010 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, Med. Phys. 20, 299 (1993).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phy. Rev. Lett. (1)

J. Ripoll, R. Schultz, and V. Ntziachristos, Phy. Rev. Lett. 91, 103901 (2003).
[CrossRef]

Phys. Med. Biol. (1)

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Phys. Med. Biol. 52, 577 (2007).
[CrossRef] [PubMed]

Phys. Rev. E (1)

V. Markel and J. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

Other (2)

M. Segal and K. Akeley, http://www.opengl.org/registry/doc/glspec32.core.20091207.pdf (2009).

I. Daubechies, CBMS Series 61 (SIAM, 1992), p. 146.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measurement system using multiple source and transmission CCD detector locations.

Fig. 2
Fig. 2

Simulated data from one projection. The images are (a) excitation data y e , (b) fluorescence data y f , (c) normalized data y f / y e masked in the region y e > 1 %   max ( y e ) to reduce noise amplification, and (d) normalized masked data compressed with 256 Battle–Lemarie wavelet coefficients—some artifacts can be seen in the background.

Fig. 3
Fig. 3

Simulated reconstructions: (a) the target, (b) reconstruction with 256 Battle–Lemarie wavelet coefficients, (c) line plot through targets showing solutions with varying number of wavelet coefficients.

Fig. 4
Fig. 4

(a) Reconstruction error, (b) data compression error as a function of number of terms ( log 2 ) retained in the compressed images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y ̂ = y obs f y obs e = 1 y calc e A h = A ̂ h ,
y ̂ i , j = w j , S P G f [ h U i e ] Σ = G f [ P S w j ] , h U i e Ω ,
y ̃ i = Z i y ̂ i .
y ̃ = A ̃ h ,
h A ̃ T ( A ̃ A ̃ T + α I ) 1 y ̃ ,

Metrics