Abstract

Monolithic lasers on Si are ideal for high-volume and large-scale electronic–photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide semiconductor technology. Recently we have demonstrated room-temperature photoluminescence, electroluminescence, and optical gain from the direct gap transition of band-engineered Ge-on-Si using tensile strain and n-type doping. Here we report what we believe to be the first experimental observation of lasing from the direct gap transition of Ge-on-Si at room temperature using an edge-emitting waveguide device. The emission exhibited a gain spectrum of 15901610nm, line narrowing and polarization evolution from a mixed TE/TM to predominantly TE with increasing gain, and a clear threshold behavior.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.
  2. N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
    [CrossRef] [PubMed]
  4. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
    [CrossRef]
  5. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
    [CrossRef]
  6. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
    [CrossRef]
  7. R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
    [CrossRef]
  8. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
    [CrossRef]
  9. D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
    [CrossRef]
  10. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
    [CrossRef]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
    [CrossRef] [PubMed]
  12. J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
    [CrossRef] [PubMed]
  13. J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
    [CrossRef]
  14. X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
    [CrossRef]
  15. X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
    [CrossRef] [PubMed]
  16. J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
    [CrossRef] [PubMed]
  17. H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
    [CrossRef]
  18. M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
    [CrossRef]
  19. R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
    [CrossRef]
  20. Physics of Group IV Elements and III-V Compounds, O.Madelung, ed. (Springer, Berlin, 1982), Vol. 22b, p. 448.
  21. D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
    [CrossRef]
  22. F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
    [CrossRef]

2009 (3)

2007 (1)

2006 (1)

2003 (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

1998 (1)

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

1997 (2)

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

1994 (2)

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

1993 (1)

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

1992 (1)

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

1977 (1)

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

1976 (1)

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

1974 (1)

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

1962 (1)

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

Atwater, H. A.

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Becla, P.

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Blum, F. A.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Botez, D.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Bowers, J. E.

Chen, K. M.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Cheng, W. Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Cohen, O.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Fang, A. W.

Federighi, M.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Figueroa, L.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Fitzgerald, E. A.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Friedman, L.

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Harry, J.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

He, G.

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Hobalen, M. V.

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

Holton, W. C.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Homewood, K. P.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Huang, Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Jacobson, D. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Johnson, L. F.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Jones, R.

Kenyon, A. J.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Kimerling, L. C.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
[CrossRef] [PubMed]

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Koch, T. L.

Koshida, N.

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

Koyama, H.

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

Lawley, K. L.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Lee, K. K.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Leong, D.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Lim, D. R.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Liu, J.

Liu, J. F.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Lockwood, D. J.

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

Logan, R. A.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Luan, H.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Michel, J.

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
[CrossRef] [PubMed]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Miller, R. C.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Nordland, W. A.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Pan, D.

Paniccia, M. J.

Park, H.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

Peng, C. S.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Pitt, C. W.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Poate, J. M.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Reeson, K. J.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Ren, F. Y. G.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Sandland, J. G.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Scott, W. C.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Sheng, T. T.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Soref, R. A.

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Sun, X.

Sun, X. C.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Trwoga, P. F.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Tung, C. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Wada, K.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Wang, S.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Wang, X. X.

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Zhang, Y. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Zheng, B.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Zhou, J. M.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

J. Appl. Phys. (2)

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

J. Phys. Chem. Solids (1)

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

J. Phys. Condens. Matter (1)

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Nature (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Superlattices Microstruct. (1)

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Other (3)

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Physics of Group IV Elements and III-V Compounds, O.Madelung, ed. (Springer, Berlin, 1982), Vol. 22b, p. 448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Edge-emission spectra of a Ge waveguide with mirror polished facets under 1064 nm excitation from a Q-switched laser with a pulse duration of 1.5 ns and a repetition rate of 1 kHz . The spectral resolution of the measurement was 2 nm . The three spectra at 1.5, 6.0, and 50 μ J /pulse pumping power correspond to spontaneous emission, threshold for lasing, and laser emission. The arrow indicates the peak optical gain wavelength reported in [16]. The inset shows a cross-sectional SEM picture of the Ge waveguide and a schematic drawing of the experimental setup for optical pumping.

Fig. 2
Fig. 2

Integral emission intensity from the waveguide facet versus optical pump power showing the lasing threshold. The pump pulse width is 1.5 ns , and the absorbed pump power density at threshold is 30 kW cm 2 . The spectral resolution of the measurement was 2 nm .

Fig. 3
Fig. 3

High-resolution scan of the emission line at 1593.6 nm using the highest available spectral resolution of 0.1 nm . Longitudinal Fabry–Perot modes are clearly observed, and the period is consistent with the Ge waveguide cavity length of 4.8 mm .

Metrics