Abstract

Monolithic lasers on Si are ideal for high-volume and large-scale electronic–photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide semiconductor technology. Recently we have demonstrated room-temperature photoluminescence, electroluminescence, and optical gain from the direct gap transition of band-engineered Ge-on-Si using tensile strain and n-type doping. Here we report what we believe to be the first experimental observation of lasing from the direct gap transition of Ge-on-Si at room temperature using an edge-emitting waveguide device. The emission exhibited a gain spectrum of 15901610nm, line narrowing and polarization evolution from a mixed TE/TM to predominantly TE with increasing gain, and a clear threshold behavior.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.
  2. N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
    [CrossRef] [PubMed]
  4. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
    [CrossRef]
  5. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
    [CrossRef]
  6. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
    [CrossRef]
  7. R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
    [CrossRef]
  8. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
    [CrossRef]
  9. D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
    [CrossRef]
  10. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
    [CrossRef]
  11. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
    [CrossRef] [PubMed]
  12. J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
    [CrossRef] [PubMed]
  13. J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
    [CrossRef]
  14. X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
    [CrossRef]
  15. X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
    [CrossRef] [PubMed]
  16. J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
    [CrossRef] [PubMed]
  17. H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
    [CrossRef]
  18. M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
    [CrossRef]
  19. R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
    [CrossRef]
  20. Physics of Group IV Elements and III-V Compounds, O.Madelung, ed. (Springer, Berlin, 1982), Vol. 22b, p. 448.
  21. D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
    [CrossRef]
  22. F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
    [CrossRef]

2009

2007

2006

2003

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

2000

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

1999

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

1998

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

1997

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

1994

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

1993

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

1992

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

1977

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

1976

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

1974

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

1962

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

Atwater, H. A.

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Becla, P.

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Blum, F. A.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Botez, D.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Bowers, J. E.

Chen, K. M.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Cheng, W. Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Cohen, O.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Fang, A. W.

Federighi, M.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Figueroa, L.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Fitzgerald, E. A.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Friedman, L.

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Harry, J.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

He, G.

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Hobalen, M. V.

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

Holton, W. C.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Homewood, K. P.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Huang, Q.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Jacobson, D. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Johnson, L. F.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Jones, R.

Kenyon, A. J.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Kimerling, L. C.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
[CrossRef] [PubMed]

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Koch, T. L.

Koshida, N.

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

Koyama, H.

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

Lawley, K. L.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Lee, K. K.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Leong, D.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Lim, D. R.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Liu, J.

Liu, J. F.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Lockwood, D. J.

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

Logan, R. A.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Luan, H.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Michel, J.

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

J. Liu, X. Sun, D. Pan, X. X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).
[CrossRef] [PubMed]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Miller, R. C.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Nordland, W. A.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

Pan, D.

Paniccia, M. J.

Park, H.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

Peng, C. S.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Pitt, C. W.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Poate, J. M.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Reeson, K. J.

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Ren, F. Y. G.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Sandland, J. G.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Scott, W. C.

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

Sheng, T. T.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Soref, R. A.

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Sun, X.

Sun, X. C.

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1198 (2009).
[CrossRef] [PubMed]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

J. F. Liu, X. C. Sun, L. C. Kimerling, and J. Michel, Opt. Lett. 34, 1738 (2009).
[CrossRef] [PubMed]

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Trwoga, P. F.

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Tung, C. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Wada, K.

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

Wang, S.

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

Wang, X. X.

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

Zhang, Y. H.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Zheng, B.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

Zhou, J. M.

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Appl. Phys. Lett.

N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 64, 2842 (1994).
[CrossRef]

X. C. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
[CrossRef]

H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
[CrossRef]

D. Botez, L. Figueroa, and S. Wang, Appl. Phys. Lett. 29, 502 (1976).
[CrossRef]

F. A. Blum, K. L. Lawley, W. C. Scott, and W. C. Holton, Appl. Phys. Lett. 24, 430 (1974).
[CrossRef]

J. Appl. Phys.

R. C. Miller, W. A. Nordland, R. A. Logan, and L. F. Johnson, J. Appl. Phys. 49, 539 (1977).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[CrossRef]

J. Phys. Chem. Solids

M. V. Hobalen, J. Phys. Chem. Solids 23, 821 (1962).
[CrossRef]

J. Phys. Condens. Matter

A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, J. Phys. Condens. Matter 6, L319 (1994).
[CrossRef]

Nature

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
[CrossRef] [PubMed]

D. Leong, J. Harry, K. J. Reeson, and K. P. Homewood, Nature 387, 686 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, Phys. Rev. B 57, 8805 (1998).
[CrossRef]

Phys. Rev. Lett.

G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[CrossRef]

Superlattices Microstruct.

R. A. Soref and L. Friedman, Superlattices Microstruct. 14, 18 (1993).
[CrossRef]

Other

D. J. Lockwood and L. Pavesi, in Silicon Photonics (Springer-Verlag, 2004), pp. 1-50.

J. F. Liu, X. C. Sun, P. Becla, L. C. Kimerling, and J. Michel, in 5th IEEE International Conference on Group IV Photonic (2008), pp. 16-18.
[CrossRef]

Physics of Group IV Elements and III-V Compounds, O.Madelung, ed. (Springer, Berlin, 1982), Vol. 22b, p. 448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Edge-emission spectra of a Ge waveguide with mirror polished facets under 1064 nm excitation from a Q-switched laser with a pulse duration of 1.5 ns and a repetition rate of 1 kHz . The spectral resolution of the measurement was 2 nm . The three spectra at 1.5, 6.0, and 50 μ J /pulse pumping power correspond to spontaneous emission, threshold for lasing, and laser emission. The arrow indicates the peak optical gain wavelength reported in [16]. The inset shows a cross-sectional SEM picture of the Ge waveguide and a schematic drawing of the experimental setup for optical pumping.

Fig. 2
Fig. 2

Integral emission intensity from the waveguide facet versus optical pump power showing the lasing threshold. The pump pulse width is 1.5 ns , and the absorbed pump power density at threshold is 30 kW cm 2 . The spectral resolution of the measurement was 2 nm .

Fig. 3
Fig. 3

High-resolution scan of the emission line at 1593.6 nm using the highest available spectral resolution of 0.1 nm . Longitudinal Fabry–Perot modes are clearly observed, and the period is consistent with the Ge waveguide cavity length of 4.8 mm .

Metrics