Abstract

The ability of subwavelength structures to create an artificial effective index opens up new perspectives in designing highly efficient diffractive optical elements. We demonstrate a design approach for binary multi-phase level computer generated holograms based on the effective medium approach. The phase pattern is formed by various subwavelength structures that cause a certain phase delay to an incident light wave. This binary structure approach leads to a significant cost reduction by simplifying the fabrication process. For demonstration, a three-phase level element, operating in the visible range, is fabricated and experimentally evaluated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Mait, D. W. Prather, and M. S. Mirotznik, J. Opt. Soc. Am. A 16, 1157 (1999).
    [CrossRef]
  2. F. T. Chen and H. G. CraigheadOpt. Lett. 21, 177 (2007).
    [CrossRef]
  3. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  4. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 23, 552 (1998).
    [CrossRef]
  5. C. Sauvan, P. Lalanne, and M.-S. L. Lee, Opt. Lett. 29, 1593 (2004).
    [CrossRef] [PubMed]
  6. C. Ribot, P. Lalanne, M. S. L. Lee, B. Loiseaux, andJ. P. Huignard, J. Opt. Soc. Am. A 24, 3819 (2007).
    [CrossRef]
  7. E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
    [CrossRef]
  8. P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
    [CrossRef]
  9. E. B. Grann and M. G. Moharam, Appl. Opt. 35, 795 (1996).
    [CrossRef] [PubMed]
  10. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, Appl. Opt. 39, 3531 (2000).
    [CrossRef]
  11. F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
    [CrossRef]
  12. P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
    [CrossRef]

2007 (3)

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

F. T. Chen and H. G. CraigheadOpt. Lett. 21, 177 (2007).
[CrossRef]

C. Ribot, P. Lalanne, M. S. L. Lee, B. Loiseaux, andJ. P. Huignard, J. Opt. Soc. Am. A 24, 3819 (2007).
[CrossRef]

2004 (1)

2000 (1)

1999 (1)

1998 (1)

1996 (2)

E. B. Grann and M. G. Moharam, Appl. Opt. 35, 795 (1996).
[CrossRef] [PubMed]

P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

1992 (1)

1991 (1)

F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Astilean, S.

Bettin, L.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Boettcher, M.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Bryngdahl, O.

F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Cambril, E.

Chavel, P.

Chen, F. T.

Craighead, H. G.

Denker, U.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Elster, T.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Erdmann, M.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Farn, M. W.

Freese, W.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Grann, E. B.

Hahmann, P.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Huignard, J. P.

Ichioka, Y.

Jahr, S.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Kämpfe, T.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Kirschstein, U. C.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Kley, E.-B.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Kliem, K. H.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Konishi, T.

Lalanne, P.

Launois, H.

Lee, M. S. L.

Lee, M. -S. L.

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

Loiseaux, B.

Mait, J. N.

Michaelis, D.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Mirotznik, M. S.

Moharam, M. G.

Prather, D. W.

Ribot, C.

Sauvan, C.

Schnabel, B.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Takahara, K.

Tünnermann, A.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Wyrowski, F.

F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Yotsuya, T.

Yu, W.

Zeitner, U. D.

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Appl. Opt. (3)

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-Lalanne, J. Mod. Opt. 43, 2063 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

Microelectron. Eng. (1)

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U. C. Kirschstein, K. H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Opt. Lett. (3)

Rep. Prog. Phys. (1)

F. Wyrowski and O. Bryngdahl, Rep. Prog. Phys. 54, 1481 (1991).
[CrossRef]

Other (1)

E.-B. Kley, W. Freese, U. D. Zeitner, D. Michaelis,T. Kämpfe, M. Erdmann, and A. Tünnermann, in Proceedings of IEEE/LEOS International Conference on Optical MEMS & Nanophotonics (IEEE/LEOS, 2009), pp. 148-149.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the quantization of (a) a continuous phase function in a (b) multiheight level surface-relief profile and (c) a multiphase level profile based on SWSs.

Fig. 2
Fig. 2

(a) Lateral expansion of the subwavelength pillar structure determines the generated phase delay. Neglecting periodic boundary conditions, this approach can be used to transfer an (b) almost arbitrary phase function in a (c) subwavelength pillar structure.

Fig. 3
Fig. 3

Scanning-electron micrograph of the subwavelength phase pattern made of resist.

Fig. 4
Fig. 4

(a) Computed target far field distribution for a conventional binary CGH with two-phase levels distinguished by twin-image generation. For comparison, the far-field patterns of the (b) theoretically determined and the (c) experimentally realized three-level phase elements are shown. The intensity distribution located in the middle of the picture is mainly caused by a mirror belonging to the experimental setup.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h = N 1 N λ n 1 .

Metrics