Abstract

This Letter presents a study on photophoresis of a microparticle in gaseous media with focus on the effect of thermal stress slip, which is deemed as one of factors causing deviations of previous theoretical predictions from measurements. The present modified theory agrees well with the measurements and, combining with 1 order-of-magnitude analysis, demonstrates the significance of the thermal stress slip in photophoresis of a particle, especially, of small radius. With the physical mechanisms addressed, the parametric analysis reveals that this interfacial thermal effect becomes more pronounced with reducing thermal conductivity of the particle and increasing Knudsen number as well.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Reed, J. Aerosol Sci. 8, 123 (1977).
    [CrossRef]
  2. D. W. Mackowski, Int. J. Heat Mass Transfer 32, 843 (1989).
    [CrossRef]
  3. H. J. Keh and F. C. Hsu, J. Colloid Interface Sci. 289, 94 (2005).
    [CrossRef] [PubMed]
  4. Y. Sone, Phys. Fluids 15, 1418 (1972).
    [CrossRef]
  5. J. C. Maxwell, Philos. Trans. R. Soc. Lond. 170, 231 (1879).
    [CrossRef]
  6. D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
    [CrossRef]
  7. P. W. Dusel, M. Kerker, and D. D. Cooke, J. Opt. Soc. Am. 69, 55 (1979).
    [CrossRef]
  8. Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
    [CrossRef]
  9. L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
    [CrossRef]
  10. E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, 1938).
  11. S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
    [CrossRef]

2005 (1)

H. J. Keh and F. C. Hsu, J. Colloid Interface Sci. 289, 94 (2005).
[CrossRef] [PubMed]

2004 (1)

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

1989 (1)

D. W. Mackowski, Int. J. Heat Mass Transfer 32, 843 (1989).
[CrossRef]

1982 (1)

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

1980 (1)

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

1979 (1)

1977 (1)

L. D. Reed, J. Aerosol Sci. 8, 123 (1977).
[CrossRef]

1976 (1)

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

1972 (1)

Y. Sone, Phys. Fluids 15, 1418 (1972).
[CrossRef]

1879 (1)

J. C. Maxwell, Philos. Trans. R. Soc. Lond. 170, 231 (1879).
[CrossRef]

Arnold, S.

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

Barber, R. W.

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

Cheng, R. K.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

Cooke, D. D.

Dusel, P. W.

Emerson, D. R.

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

Hsu, F. C.

H. J. Keh and F. C. Hsu, J. Colloid Interface Sci. 289, 94 (2005).
[CrossRef] [PubMed]

Keh, H. J.

H. J. Keh and F. C. Hsu, J. Colloid Interface Sci. 289, 94 (2005).
[CrossRef] [PubMed]

Kennard, E. H.

E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, 1938).

Kerker, M.

Kutukov, V. B.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Lewittes, M.

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

Lockerby, D. A.

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

Mackowski, D. W.

D. W. Mackowski, Int. J. Heat Mass Transfer 32, 843 (1989).
[CrossRef]

Maxwell, J. C.

J. C. Maxwell, Philos. Trans. R. Soc. Lond. 170, 231 (1879).
[CrossRef]

Reed, L. D.

L. D. Reed, J. Aerosol Sci. 8, 123 (1977).
[CrossRef]

Reese, J. M.

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

Schefer, R. W.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

Shchukin, E. R.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Sone, Y.

Y. Sone, Phys. Fluids 15, 1418 (1972).
[CrossRef]

Talbot, L.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

Willis, D. R.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

Yalamov, Y. I.

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Int. J. Heat Mass Transfer (1)

D. W. Mackowski, Int. J. Heat Mass Transfer 32, 843 (1989).
[CrossRef]

J. Aerosol Sci. (1)

L. D. Reed, J. Aerosol Sci. 8, 123 (1977).
[CrossRef]

J. Appl. Phys. (1)

S. Arnold and M. Lewittes, J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

J. Colloid Interface Sci. (2)

Y. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

H. J. Keh and F. C. Hsu, J. Colloid Interface Sci. 289, 94 (2005).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mech. 101, 737 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Philos. Trans. R. Soc. Lond. (1)

J. C. Maxwell, Philos. Trans. R. Soc. Lond. 170, 231 (1879).
[CrossRef]

Phys. Fluids (1)

Y. Sone, Phys. Fluids 15, 1418 (1972).
[CrossRef]

Phys. Rev. E (1)

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Phys. Rev. E 70, 017303 (2004).
[CrossRef]

Other (1)

E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, 1938).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Physical model of a microspherical particle photophoresis in a gaseous medium.

Fig. 2
Fig. 2

Comparison of the theoretical predictions of photophoretic force with and without thermal stress slip and previous experimental data at various particle size parameters.

Fig. 3
Fig. 3

Normalized photophoretic velocity with and without thermal stress slip at various conditions of relative thermal conductivity of the particle k and Knudsen number K n .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v θ = c m l [ r r ( v θ r ) + 1 r v r θ c t s μ ρ T 0 R 2 T g r θ ] + c t c μ ρ T 0 R T g θ ,
F = 6 π R μ V 0 ( 1 + 2 c m K n 1 + 3 c m K n ) 4 π μ 2 R I J 1 ρ T 0 k g c t c + 2 c t s c m K n ( 1 + 3 c m K n ) ( 2 + k + 2 c t j k K n ) ,
V p h = 2 R I J 1 3 k g 2 k B π M T 0 K n ( c t c + 2 c t s c m K n ) ( 1 + 2 c m K n ) ( 2 + k + 2 c t j k K n ) .
V p h = K n ( c t c + 2 c t s c m K n ) ( 1 + 2 c m K n ) ( 2 + k + 2 c t j k K n ) .

Metrics