Abstract

The surface plasmon polariton (SPP) dispersion at the interface between a dielectric half-space and a layered metallodielectric metamaterial is investigated. By varying the material constituants, it is shown that the SPP resonance frequency can be readily shifted to the near-IR. Through numerical simulations, the validity domain of homogenization and the effects of the finite number of layers in the metamaterial are studied. It is found that as few as N=2 periods are sufficient for practical operation. These results reveal the potential of employing metallodielectric stacks for sensing applications in the near-IR regime.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. X. Luo, and T. Ishihara, Opt. Express 12, 3055 (2004).
    [CrossRef] [PubMed]
  3. B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  4. A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
    [CrossRef]
  5. S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
    [CrossRef]
  6. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
    [CrossRef]
  7. J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef] [PubMed]
  8. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, Opt. Lett. 34, 3535 (2009).
    [CrossRef] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  10. A. Yariv, and P. YehOptical Waves in Crystals (Wiley-Interscience, 2003).
  11. J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef] [PubMed]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  13. B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
    [CrossRef]
  14. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, Opt. Lett. 32, 1578 (2007).
    [CrossRef] [PubMed]
  15. P. Lalanne, and D. Lemercier-Lalanne, J. Opt. Soc. Am. A 14, 450 (1997).
    [CrossRef]
  16. C. Gu, and P. Yeh, Opt. Lett. 21, 504 (1996).
    [CrossRef] [PubMed]

2009

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, Opt. Lett. 34, 3535 (2009).
[CrossRef] [PubMed]

2007

S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
[CrossRef]

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, Opt. Lett. 32, 1578 (2007).
[CrossRef] [PubMed]

2006

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

2005

J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

2004

X. Luo, and T. Ishihara, Opt. Express 12, 3055 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

2000

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

1997

1996

Atkinson, R.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Avrutsky, I.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

Beister, J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Boyd, R. W.

Brandt, T.

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Dressel, M.

Elser, J.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Gergen, B.

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

Gompf, B.

Govyadinov, A. A.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

Gu, C.

Halas, N.

S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
[CrossRef]

Hendren, W.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Ishihara, T.

Kabashin, A. V.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
[CrossRef]

Lalanne, P.

Lemercier-Lalanne, D.

Liapis, A. C.

Link, S.

S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
[CrossRef]

Luo, X.

Martín-Moreno L, L.

J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

McFarland, E. M.

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

Nelson, M. A.

Nienhaus, H.

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

Novotny, L.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pastkovsky, S.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Pevans, E.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Pflaum, J.

Piredda, G.

Podolskiy, V. A.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

Pollard, R.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Salakhutdinov, I.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Shi, Z.

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Weinberg, W. H.

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Yariv, A.

A. Yariv, and P. YehOptical Waves in Crystals (Wiley-Interscience, 2003).

Yeh, P.

C. Gu, and P. Yeh, Opt. Lett. 21, 504 (1996).
[CrossRef] [PubMed]

A. Yariv, and P. YehOptical Waves in Crystals (Wiley-Interscience, 2003).

Zayats, A. V.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

J. Nanomater.

J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, J. Nanomater. 2007, 79469 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

B. Gergen, H. Nienhaus, W. H. Weinberg, and E. M. McFarland, J. Vac. Sci. Technol. B 18, 2401 (2000).
[CrossRef]

Nat. Photonics

S. Lal, S. Link, and N. Halas, Nat. Photonics 1, 641 (2007).
[CrossRef]

Nature Mater.

A. V. Kabashin, E. Pevans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nature Mater. 8, 867 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Phys. Rev. Lett.

J. T. Shen, P. B. Catrysse, and S. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martín-Moreno L, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

A. Yariv, and P. YehOptical Waves in Crystals (Wiley-Interscience, 2003).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SPP mode at the interface between a metallodielectric metamaterial and a dielectric half-space. (a) Illustration of the proposed geometry. (b) Dispersion relation for the SPP derived using zeroth-order EMT for different values of ε d and f. The simulated geometry is shown in the inset. The X on the vertical axis indicates where ω ω p corresponds to λ = 1 μ m .

Fig. 2
Fig. 2

Characteristics of an SPP designed to have a strong confinement at λ 1 = 1.55 μ m ( f = 0.21 ) and λ 2 = 3 μ m ( f = 0.043 ) . (a) Comparison between EMT predictions (black solid curve) and fully vectorial calculations for t m = 8 nm (red dashed curve) and 16 nm (blue dashed-dotted curve), for f = 0.21 . (b) Normalized confinement ( δ λ ) and propagation length ( L λ ) for f = 0.21 (top) and f = 0.043 (bottom), calculated with t m = 8 nm . The red solid curves show the normalized confinement for a silver–air interface.

Fig. 3
Fig. 3

Effects of finite N on the confinement ( δ λ ) and the propagation length ( L λ ) for λ = 1.55 μ m , t m = 8 nm , and a = 38 nm . In the inset, the SPP mode profile ( | H y | 2 ) is shown for the case N = 2 , and is compared to that at a bulk silver–air interface at λ = 750 nm [light gray curve (green online)]. The position of the interface is indicated by the vertical dashed line.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 ε 1 ε z z ( ε 1 ε x x ) ( ε 1 2 ε x x ε z z ) .
η ε d | ε m | = ε d 2 ε 1 2 ,
ω sp ( eff ) = ω sp η ε d ( ε 1 + ε ) ( ε d 2 ε 1 2 ) ,

Metrics