Abstract

We present a technique to embed silica micro and nanofibers in low-index material (Teflon) using an inexpensive and straightforward fabrication process based on spin coating. The optical properties of the silica micro/nano-fibers have been investigated when they are bare or completely or partially embedded. Optical degradation occurs in bare fibers with diameters smaller than twice the wavelength of the guided light, thus making protection through embedding necessary. Our results also show that completely embedded fibers do not degrade over a long time, while partially embedded fibers can preserve the large evanescent waves without undergoing considerable degradation, which would be further reduced or even become negligible with functional overlayers. The results represent a step forward toward the development of durable and stable devices based on optical micro/nano fibers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef] [PubMed]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. Sessions, E. Koukharenko, X. Feng, G. Murugan, J. Wilkinson, and D. Richardson, Adv. Opt. Photon. 1, 107 (2009).
    [CrossRef]
  3. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, Opt. Express 15, 1267 (2007).
    [CrossRef] [PubMed]
  4. G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
    [CrossRef] [PubMed]
  5. M. Sumetsky, in Advanced Photonic Structures for Biological and Chemical Detection, X.Fan, ed. (Springer, 2009).
  6. J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
    [CrossRef] [PubMed]
  7. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, Opt. Express 16, 13349 (2008).
    [CrossRef] [PubMed]
  8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, J. Lightwave Technol. 24, 242 (2006).
    [CrossRef]
  9. X. Guo and L. Tong, Opt. Express 16, 14429 (2008).
    [CrossRef] [PubMed]
  10. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, Opt. Express 16, 1062 (2008).
    [CrossRef] [PubMed]
  11. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Opt. Express 15, 11952 (2007).
    [CrossRef] [PubMed]
  12. F. Xu and G. Brambilla, Jpn. J. Appl. Phys. Part 1 47, 6675 (2008).
    [CrossRef]
  13. C. Caspar and E.-J. Bachus, Electron. Lett. 25, 1506 (1989).
    [CrossRef]
  14. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef] [PubMed]
  15. G. Vienne, Y. Li, and L. Tong, IEEE Photon. Technol. Lett. 19, 1386 (2007).
    [CrossRef]
  16. L. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 34, 2724 (2009).
    [CrossRef] [PubMed]
  17. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, Opt. Express 17, 18142 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (4)

2007 (4)

2006 (1)

2005 (2)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

1989 (1)

C. Caspar and E.-J. Bachus, Electron. Lett. 25, 1506 (1989).
[CrossRef]

Aers, G.

Alt, W.

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Bachus, E.-J.

C. Caspar and E.-J. Bachus, Electron. Lett. 25, 1506 (1989).
[CrossRef]

Birks, T. A.

Brambilla, G.

Caspar, C.

C. Caspar and E.-J. Bachus, Electron. Lett. 25, 1506 (1989).
[CrossRef]

Chen, Y. H.

Dalacu, D.

DiGiovanni, D. J.

Dulashko, Y.

Eggleton, B. J.

England, R.

Feng, X.

Finazzi, V.

Fini, J. M.

Frédérick, S.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Gong, Y.

Grillet, C.

Grogan, M. D.

Gu, F.

Guo, X.

Hale, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Horak, P.

Jung, Y.

Koizumi, F.

Koukharenko, E.

Lapointe, J.

Leon-Saval, S. G.

Li, Y.

G. Vienne, Y. Li, and L. Tong, IEEE Photon. Technol. Lett. 19, 1386 (2007).
[CrossRef]

Lou, J.

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, Opt. Express 16, 13349 (2008).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Mansuripur, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Meschede, D.

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Opt. Express 15, 11952 (2007).
[CrossRef] [PubMed]

Monat, C.

Monzón-Hernández, D.

Moss, D. J.

Murugan, G.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Poole, P. J.

Pruneri, V.

Rao, Y. J.

Rauschenbeutel, A.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Opt. Express 15, 11952 (2007).
[CrossRef] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

Richardson, D.

Sagué, G.

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

Sessions, N.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Smith, C. L.

Sokolowski, M.

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, J. Lightwave Technol. 24, 242 (2006).
[CrossRef]

M. Sumetsky, in Advanced Photonic Structures for Biological and Chemical Detection, X.Fan, ed. (Springer, 2009).

Tong, L.

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, Opt. Express 16, 13349 (2008).
[CrossRef] [PubMed]

X. Guo and L. Tong, Opt. Express 16, 14429 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, and L. Tong, IEEE Photon. Technol. Lett. 19, 1386 (2007).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Vetsch, E.

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, Opt. Express 15, 11952 (2007).
[CrossRef] [PubMed]

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

Vienne, G.

G. Vienne, Y. Li, and L. Tong, IEEE Photon. Technol. Lett. 19, 1386 (2007).
[CrossRef]

Villatoro, J.

Wadsworth, W. J.

Warken, F.

Wilkinson, J.

Williams, R.

Williams, R. L.

Wu, Y.

Xiao, L.

Xu, F.

Yin, X.

Zhang, L.

Adv. Opt. Photon. (1)

Electron. Lett. (1)

C. Caspar and E.-J. Bachus, Electron. Lett. 25, 1506 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Vienne, Y. Li, and L. Tong, IEEE Photon. Technol. Lett. 19, 1386 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. Part 1 (1)

F. Xu and G. Brambilla, Jpn. J. Appl. Phys. Part 1 47, 6675 (2008).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
[CrossRef] [PubMed]

Other (1)

M. Sumetsky, in Advanced Photonic Structures for Biological and Chemical Detection, X.Fan, ed. (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Loss change as a function of time observed in three bare optical microfibers with diameters indicated in the figure. The operating wavelength was 1550 nm . The time 0 is when the fabrication of the MNF ends.

Fig. 2
Fig. 2

Illustration of (a) fully embedded and (b) partially embedded optical microfibers and (c) embedded micro/nano-fiber stack (c). 1, wafer or substrate; 2, Al layer; 3, 4, the two layers of Teflon; 5, optical micro/nano fiber.

Fig. 3
Fig. 3

SEM image of a partially embedded optical microfiber close to the thinnest section. The arrow shows the underlaying layer of Teflon.

Fig. 4
Fig. 4

Loss as a function of time observed in a 1 - μ m -thick optical fiber when it was partially embedded (solid line) and totally embedded in Teflon (dotted line). The measurements were carried out at 1550 nm . The time 0 was when the embedded process ended.

Fig. 5
Fig. 5

Transmission as a function of time observed in a partially embedded 1 μ m diameter MNF when oil or acetone (inset) was placed on it.

Metrics