Abstract

We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
    [CrossRef] [PubMed]
  2. T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  3. K. Wang and D. M. Mittleman, J. Opt. Soc. Am. B 22, 2001 (2005).
    [CrossRef]
  4. M. Wachter, M. Nagel, and H. Kurz, Opt. Express 13, 10815 (2005).
    [CrossRef] [PubMed]
  5. T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theory Tech. 54, 2762 (2006).
    [CrossRef]
  6. K. Wang and D. M. Mittleman, Phys. Rev. Lett. 96, 157401 (2006).
    [CrossRef] [PubMed]
  7. N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]
  8. M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
    [CrossRef]
  9. H. W. Liang, S. C. Ruan, and M. Zhang, Opt. Express 16, 18241 (2008).
    [CrossRef] [PubMed]
  10. V. Astley, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 95, 031104 (2009).
    [CrossRef]
  11. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
    [CrossRef] [PubMed]
  12. M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
    [CrossRef]
  13. S. Lee, S. Kim, and H. Lim, Opt. Express 17, 19435 (2009).
    [CrossRef] [PubMed]
  14. J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, Opt. Express 14, 8772 (2006).
    [CrossRef] [PubMed]
  15. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
    [CrossRef]
  16. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, Opt. Express 14, 279 (2006).
    [CrossRef] [PubMed]
  17. G. Goubau, J. Appl. Phys. 21, 1119 (1950).
    [CrossRef]
  18. F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
    [CrossRef]
  19. E. A. J. Marcatili and S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

2009

V. Astley, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

S. Lee, S. Kim, and H. Lim, Opt. Express 17, 19435 (2009).
[CrossRef] [PubMed]

2008

2007

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

2006

2005

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, J. Opt. Soc. Am. B 22, 2001 (2005).
[CrossRef]

M. Wachter, M. Nagel, and H. Kurz, Opt. Express 13, 10815 (2005).
[CrossRef] [PubMed]

2004

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef] [PubMed]

1969

E. A. J. Marcatili and S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

1961

F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
[CrossRef]

1950

G. Goubau, J. Appl. Phys. 21, 1119 (1950).
[CrossRef]

Akalin, T.

T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theory Tech. 54, 2762 (2006).
[CrossRef]

Astley, V.

V. Astley, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

Awad, M.

M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

Berndsen, N.

Bocquet, B.

T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theory Tech. 54, 2762 (2006).
[CrossRef]

Coutaz, J. -L.

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

Deibel, J. A.

Escarra, M. D.

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Garet, F.

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

Goubau, G.

G. Goubau, J. Appl. Phys. 21, 1119 (1950).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Jeon, T. -I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Kim, S.

Kurz, H.

M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

M. Wachter, M. Nagel, and H. Kurz, Opt. Express 13, 10815 (2005).
[CrossRef] [PubMed]

Lee, S.

Liang, H. W.

Lim, H.

Marcatili, E. A. J.

E. A. J. Marcatili and S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Mendis, R.

V. Astley, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

Miller, S. E.

E. A. J. Marcatili and S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Mittleman, D. M.

Nagel, M.

M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

M. Wachter, M. Nagel, and H. Kurz, Opt. Express 13, 10815 (2005).
[CrossRef] [PubMed]

Nazarov, M.

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Planken, P. C. M.

Ruan, S. C.

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Shkurinov, A.

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Sobel, F.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
[CrossRef]

Treizebre, A.

T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theory Tech. 54, 2762 (2006).
[CrossRef]

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

van der Valk, N. C. J.

Wachter, M.

Walther, M.

M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

Wang, K.

Wentworth, F. L.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
[CrossRef]

Wiltse, J. C.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zhang, M.

Appl. Phys. Lett.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).
[CrossRef]

V. Astley, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

IEEE Trans. Microwave Theory Tech.

T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theory Tech. 54, 2762 (2006).
[CrossRef]

IRE Trans. Microwave Theory Tech.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).
[CrossRef]

J. Appl. Phys.

G. Goubau, J. Appl. Phys. 21, 1119 (1950).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef] [PubMed]

Opt. Commun.

M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun. 277, 33 (2007).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Peak-to-peak terahertz field amplitude for increasing gap between the two waveguide sections. Filled squares and open circles represent measurements on opposite sides of the waveguide to illustrate the symmetry of the mode at the end of the second section. The two insets show a schematic of the experiment, and the spectra for gaps of 0 (thick curve) and 12 (thin curve) cm. This illustrates that the signal decreases when a gap is inserted, but the bandwidth is essentially unchanged. (b) Relative dependence of signal strength on gap size, for a few selected spectral components. Higher frequencies diffract less strongly at the end of the first wire, and therefore couple across the gap more efficiently.

Fig. 2
Fig. 2

Time-domain terahertz waveforms for a series of waveguide configurations at increasing angular offset, as illustrated. Significant signal remains until approximately 30° of angular displacement.

Fig. 3
Fig. 3

Time-domain terahertz waveforms for (a) a straight waveguide, (b) two waveguide sections in a perpendicular arrangement, and (c) perpendicular waveguides with the addition of a turning mirror. The amplitude of the signal in (c) is 75% of the amplitude in (a).

Fig. 4
Fig. 4

Amplitude transmission after propagation along a curved waveguide section of radius R and turn angle of 90°. The transmission was determined from the time-domain waveforms by comparing the peak amplitude for the complete curved waveguide (one curved section between two straight sections) with the case of two straight sections only. The decrease at small radii results from bending loss, whereas the behavior at large radii is dictated by ohmic losses. The solid curve is a fit to the data using Eq. (2), which includes the mode size parameter Δ. Inset, an illustration of the transmission predicted by Eq. (1). This shows monotonic behavior as a function of R, which is inconsistent with the fact that the transmission must vanish as R 0 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t = e ( 1 / 2 ) α T z = e ( 1 / 2 ) R θ α T = exp [ R θ ( c 1 e c 2 R + α ohmic ) / 2 ] .
t = exp [ R θ ( c 1 e c 2 R + α ohmic ) / 2 ] ( 1 e R / Δ ) .

Metrics