Abstract

The characteristics of electrically injected silicon-based photonic crystal microcavities with PbSe quantum dots are described. The device includes suitable electron and hole transporting layers and contact layers. The measured electroluminescence at room temperature exhibits an enhanced spontaneous emission. The resonant mode is observed at λ=1669  nm with a spectral linewidth of 4 nm, corresponding to a cavity Q factor of 420.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
    [CrossRef] [PubMed]
  2. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
    [CrossRef]
  3. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, Opt. Express 14, 3273 (2006).
    [CrossRef] [PubMed]
  4. J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
    [CrossRef]
  5. Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  6. R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
    [CrossRef]
  7. B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
    [CrossRef]
  8. S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
    [CrossRef]
  9. J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
    [CrossRef] [PubMed]

2009 (1)

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

2006 (3)

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, Opt. Express 14, 3273 (2006).
[CrossRef] [PubMed]

2004 (1)

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
[CrossRef]

2002 (2)

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
[CrossRef]

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

Bulovic, V.

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

Caruge, J. -M.

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

Cauchi, S.

Chen, C.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Cui, D.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Du, H.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Guyot-Sionnest, P.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
[CrossRef]

Halpert, J. E.

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

Harbold, J. M.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Hollingsworth, J. A.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

Hoogland, S.

Howard, I.

Klimov, V. I.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
[CrossRef]

Krauss, T. D.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Krishnan, R.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Kuo, Y. -H.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Levina, L.

Liang, Z.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Paradee, G.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Petruska, M. A.

R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
[CrossRef]

Pietryga, J. M.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

Sargent, E. H.

Schaller, R. D.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
[CrossRef]

Shen, Y. -J.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Shu, T. -C.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Silcox, J.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Stewart, M. H.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

Sukhovatkin, V.

Thomas, M. G.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Tsai, M. -C.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Tsai, M. -L.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Wang, A. Y.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Wang, C.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
[CrossRef]

Wang, Q.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Wehrenberg, B. L.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
[CrossRef]

Werder, D.

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

Wise, F. W.

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

Xu, J.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Xu, S.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Yen, S. -H.

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

Zhu, T.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Appl. Phys. A (1)

S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Shu, and Y.-H. Kuo, Appl. Phys. A 97, 705 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).
[CrossRef]

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, J. Phys. Chem. B 106, 10634 (2002).
[CrossRef]

Nano Lett. (2)

H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
[CrossRef]

J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, Nano Lett. 6, 2991 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, Nanotechnology 17, 5428 (2006).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the device heterostructure fabricated on SOI. PbSe QDs with MEH-PPV are clad by PEDOT:PSS on the ITO anode and Al q 3 / Ca / Al cathode. The left inset is a scanning electron microscope image of the L 3 defect PC microcavity in silicon. Outer air holes at both edges in the defect are shifted by 0.1 a . The right inset shows measured I - V characteristics of a fabricated device with a turn-on voltage of 12   V ; (b) energy band diagram of device heterostructure with PbSe QDs.

Fig. 2
Fig. 2

(a) Three-dimensional schematic of L 3 defect PC microcavity; (b)–(d) numerically calculated electric field profiles ( E Z ) of the cavity mode in (b) x y plane at the center of a defect, (c) x z plane at the interface of ITO and PbSe QDs, and (d) x z plane at the center of a defect.

Fig. 3
Fig. 3

(a) Measured room temperature electroluminescence spectra. The resonant mode is observed at λ = 1669   nm with a linewidth of 4   nm . The inset shows measured room temperature electroluminescence of the control device without a PC microcavity and a gold blocking layer; (b) measured light-current characteristics of the resonant mode in a second device showing a turn-on current of 6   mA . The measured room temperature electroluminescence shown in the inset exhibits a resonant mode at 1571.2 nm with a linewidth of 14.3 nm.

Metrics