Abstract

We report an experimental realization of a highly birefringent photonic crystal fiber as a result of compressing a regular hexagonal structure. The experimental measurements estimate a group birefringence of approximately 5.5×103 at 1550nm in good agreement with the numerical results. We study the influence of compressing the regular structure at different directions and magnifications, obtaining a method to realistically enhance the phase birefringence while moderating the group birefringence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
    [CrossRef]
  2. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, Opt. Lett. 29, 1336 (2004).
    [CrossRef] [PubMed]
  3. A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
    [CrossRef]
  4. M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, Opt. Express 17, 6931 (2009).
    [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, Opt. Lett. 25, 1325 (2000).
    [CrossRef]
  6. M. J. Steel and J. Osgood, Opt. Lett. 26, 229 (2001).
    [CrossRef]
  7. L. Zhang and C. Yang, Opt. Express 12, 2371 (2004).
    [CrossRef] [PubMed]
  8. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, Opt. Express 17, 1660 (2009).
    [CrossRef] [PubMed]
  9. I. Bassett and A. Argyros, Opt. Express 10, 1342 (2002).
    [PubMed]
  10. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, Opt. Lett. 32, 469 (2007).
    [CrossRef] [PubMed]
  11. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Ortigosa-Blanch, Opt. Lett. 30, 453 (2005).
    [CrossRef] [PubMed]
  12. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Coves, Opt. Lett. 31, 1190 (2006).
    [CrossRef] [PubMed]
  13. S. C. Rashleigh, Opt. Lett. 8, 336 (1983).
    [CrossRef] [PubMed]
  14. M. Legre, M. Wegmuller, and N. Gisin, J. Lightwave Technol. 21, 3374 (2003).
    [CrossRef]
  15. S. C. Rashleigh, Opt. Lett. 7, 294 (1982).
    [CrossRef] [PubMed]

2009

2007

2006

2005

2004

2003

2002

2001

2000

1983

1982

Andrés, M. V.

M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, Opt. Express 17, 6931 (2009).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
[CrossRef]

Andrés, P.

Argyros, A.

Arriaga, J.

Bassett, I.

Birks, T. A.

Carvalho, I. C. S.

Chesini, G.

Choi, H.-G.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Cordeiro, C. M. B.

Coves, A.

Cox, F.

Cruz, J. L.

A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
[CrossRef]

de Matos, C. J. S.

Delgado-Pinar, M.

M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, Opt. Express 17, 6931 (2009).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
[CrossRef]

Díez, A.

M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, Opt. Express 17, 6931 (2009).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
[CrossRef]

Dong, X.

Fellew, M.

Fokine, M.

Gisin, N.

Henry, G.

Issa, N. A.

Jin, L.

Jung, Y.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Kai, G.

Kee, C.-S.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Kim, S.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Knight, J. C.

Large, M. C. J.

Lee, J.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Legre, M.

Li, Y.

Liu, J.

Liu, Y.

Lu, Y.

Mangan, B. J.

Miret, J. J.

Oh, K.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

Ortigosa-Blanch, A.

Osgood, J.

Pinheiro-Ortega, T.

Rashleigh, S. C.

Russell, P. S. J.

Silvestre, E.

Steel, M. J.

Sun, T.

Torres-Peiró, S.

van Eijkelenborg, M. A.

Wadsworth, W. J.

Wang, Z.

Wegmuller, M.

Yang, C.

Yuan, S.

Yue, Y.

Zhang, C.

Zhang, L.

IEEE Photon. Technol. Lett.

A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, IEEE Photon. Technol. Lett. 16, 1667 (2004).
[CrossRef]

J. Appl. Phys.

S. Kim, C.-S. Kee, J. Lee, Y. Jung, H.-G. Choi, and K. Oh, J. Appl. Phys. 102, 016101 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Detailed scanning electron microscope (SEM) image of an elliptical core Hi-Bi fiber. Note the effect of the lateral stress. (b) Hi-Bi fiber deformed by compressing approximately up to a 60% of its original size along an angle θ = 20 ° with respect to a major diagonal of the undeformed hexagon. (c) Regular structure before the deformation. Arrows show the compression direction with respect to the horizontal axis. (d) Structure compressed in the direction shown by the arrows. (e) Set of three other fibers constructed with different compression factors.

Fig. 2
Fig. 2

Group (solid) and phase (dashed) birefringence as a function of the compression direction ( θ ) at a wavelength λ = 1.55 μ m . For all cases Λ = 3.1 μ m and d = 2.8 μ m as in Fig. 1. Note that although B p reaches a maximum for θ = 0 , B g is boosted more than what B p increases.

Fig. 3
Fig. 3

Group (solid) and phase (dashed) birefringence as a function of the wavelength for θ = 20 ° and several compression factors. Raising the compression considerably increases the wavelength dependence of B g . Circles correspond to experimental values for B g , showing good agreement when K = 61 % . In the inset, B g (solid) and B p (dashed) are relative to its value at θ = 0 , versus wavelength, for K = 60 % , and several compression directions, θ. The values of Λ and d are the same as in Fig. 2.

Fig. 4
Fig. 4

Group birefringence for different magnifications using K = 61 % and θ = 20 ° . The unscaled system ( M = 1 ) represents the structure whose geometrical parameters are closer to those measured at the fiber shown in Fig. 1a, being the values of Λ and d, as shown in Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B g ( λ ) = B p ( λ ) λ B p λ .

Metrics