Abstract

We propose a type of photonic-plasmonic antennas capable of focusing light into subwavelength focal point(s) at several wavelengths, which are formed by embedding conventional dimer gap or bow-tie nanoantennas into multiple-periodic gratings. Fano-type coupling between localized surface plasmon resonances of dimer antennas and photonic modes in the gratings adds new functionalities, including multiple-wavelength operation and controllable enhancement of the field intensity in the focal point. Multiple-wavelength operation of nanoantennas provides tremendous opportunities for broadband single-molecule fluorescence and Raman sensing, emission enhancement, and near-field imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
    [CrossRef]
  2. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
    [CrossRef]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
    [CrossRef]
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  6. H. Fischer and O. J. F. Martin, Opt. Express 16, 9144 (2008).
    [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008).
    [CrossRef]
  8. S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
    [CrossRef] [PubMed]
  9. S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
    [CrossRef] [PubMed]
  10. Y.-L. Xu, Appl. Opt. 34, 4573 (1995).
    [CrossRef] [PubMed]
  11. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, Opt. Express 17, 3741 (2009).
    [CrossRef] [PubMed]

2009

2008

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, Opt. Express 16, 9144 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008).
[CrossRef]

2006

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

2005

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

2004

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

1995

Alù, A.

A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008).
[CrossRef]

Bakker, R. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Bharadwaj, P.

Boltasseva, A.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Boriskina, S. V.

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Dal Negro, L.

Deutsch, B.

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Drachev, V. P.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008).
[CrossRef]

Fischer, H.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Gopinath, A.

Gresillon, S.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

Kildishev, A. V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Liu, Z.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Martin, O. J. F.

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Novotny, L.

Pedersen, R. H.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Reinhard, B. M.

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Xu, Y. -L.

Yuan, H. -K.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).
[CrossRef]

J. Chem. Phys.

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photonics 2, 365 (2008).
[CrossRef]

A. Alù and N. Engheta, Nat. Photonics 2, 307 (2008).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Multifocal photonic-plasmonic antenna. (a) Schematic of a multifocal antenna. (b) Intensity enhancement in three antenna foci as a function of the wavelength of the incident field for r 1 = 55   nm , a 1 = 500   nm , r 2 = 60   nm , a 2 = 550   nm , r 3 = 65   nm , and a 3 = 600   nm . Intensity enhancement in a dimer is shown as a dashed line. (c)–(e) Near-field intensity distributions (log scale) in the central part of the antenna at three wavelengths ( λ 1 = 507   nm , λ 1 = 557   nm , and λ 2 = 610   nm ) corresponding to the peaks in Fig. 1b.

Fig. 2
Fig. 2

Role of grating length and configuration. (a) Intensity enhancement in the gap of a dimer embedded in a 1D two-arm grating with r = 70   nm , a = 600   nm (see inset) as a function of the wavelength and the grating length. The labels indicate the number of periods in each grating arm, and the dashed line shows the intensity in the bare dimer. Scaling of the focal spot intensity (b) and the peak wavelength (c) with the number of grating periods for the three gratings shown in the insets of Fig. 2b. (d) Focal point intensity scaling and peak intensity wavelength shift in the antenna with the ten-period six-arm grating [dotted lines in (b) and (c)] with the change of the radii of the particles in the grating.

Fig. 3
Fig. 3

Multiple-wavelength photonic-plasmonic antenna. (a) Schematic of the multiple-wavelength antenna ( r 1 = 50   nm , a 1 = 420   nm , r 2 = 55   nm , a 2 = 500   nm , r 3 = 70   nm , and a 3 = 600   nm ). Total extinction efficiency (b) and focal point intensity enhancement (c) in the dimer (dashed), multiple-periodic grating without a dimer (dotted) and grating-assisted antenna (solid) as a function of wavelength.

Fig. 4
Fig. 4

Near-field intensity distributions (log scale) in the multiple-wavelength antenna at the wavelengths ( λ 1 = 388   nm , λ 2 = 449   nm , λ 3 = 523   nm , and λ 4 = 621   nm ) corresponding to the four peaks in Fig. 3c. At each wavelength, a high-intensity hot spot is created in the dimer gap.

Fig. 5
Fig. 5

Optimization of the dimer-grating coupling efficiency. (a) Focal point intensity in a bare dimer (gap 15 nm) as a function of wavelength and the radii of the nanoparticles (labeled in the units of nm). (b) Scaling of the focal point intensity in the optimized ( r = 95   nm ) 20-period six-arm single-wavelength antenna [same as in Fig. 2d] with the radii of the particles in the dimer.

Metrics