Abstract

We demonstrate what is to our knowledge the first realization of an optical parametric amplifier in orientation-patterned GaAs amplifying the emission of a quantum-cascade laser (QCL) with a distributed-feedback (DFB) structure. We report a gain as high as 53dB at 4.5μm, in good agreement with theoretical calculations. The narrow spectral linewidth and the good beam quality of this source are imposed by the DFB-QCL, while high-peak-power emission is achieved through the parametric amplification. These characteristics are of valuable interest for long-range spectroscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, Appl. Phys. Lett. 70, 2670 (1997).
    [CrossRef]
  2. C. Gmachl, IEEE Photon. Technol. Lett. 9, 1090 (1997).
    [CrossRef]
  3. M. Carras, Appl. Phys. Lett. 93, 011109 (2008).
    [CrossRef]
  4. K. Vodopyanov, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]
  5. C. Kieleck, Opt. Lett. 34, 262 (2009).
    [CrossRef] [PubMed]
  6. T. Skauli, Opt. Lett. 27, 628 (2002).
    [CrossRef]
  7. L. Eyres, Appl. Phys. Lett. 79, 904 (2001).
    [CrossRef]
  8. P. Kuo, Opt. Lett. 18, 2735 (2007).
    [CrossRef]
  9. A. Smith, Proc. SPIE 3928, 62 (2000).
    [CrossRef]
  10. R. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003).
    [CrossRef]

2009 (1)

2008 (1)

M. Carras, Appl. Phys. Lett. 93, 011109 (2008).
[CrossRef]

2007 (1)

P. Kuo, Opt. Lett. 18, 2735 (2007).
[CrossRef]

2004 (1)

2002 (1)

2001 (1)

L. Eyres, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

2000 (1)

A. Smith, Proc. SPIE 3928, 62 (2000).
[CrossRef]

1997 (2)

J. Faist, Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

C. Gmachl, IEEE Photon. Technol. Lett. 9, 1090 (1997).
[CrossRef]

Carras, M.

M. Carras, Appl. Phys. Lett. 93, 011109 (2008).
[CrossRef]

Eyres, L.

L. Eyres, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Faist, J.

J. Faist, Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

Gmachl, C.

C. Gmachl, IEEE Photon. Technol. Lett. 9, 1090 (1997).
[CrossRef]

Kieleck, C.

Kuo, P.

P. Kuo, Opt. Lett. 18, 2735 (2007).
[CrossRef]

Skauli, T.

Smith, A.

A. Smith, Proc. SPIE 3928, 62 (2000).
[CrossRef]

Sutherland, R.

R. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003).
[CrossRef]

Vodopyanov, K.

Appl. Phys. Lett. (3)

M. Carras, Appl. Phys. Lett. 93, 011109 (2008).
[CrossRef]

L. Eyres, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

J. Faist, Appl. Phys. Lett. 70, 2670 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Gmachl, IEEE Photon. Technol. Lett. 9, 1090 (1997).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

A. Smith, Proc. SPIE 3928, 62 (2000).
[CrossRef]

Other (1)

R. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the OP-GaAs OPA. The pump stage is made of a cw Tm fiber laser pumping a Q-switched Ho:YAG cavity (between M1, M2, and M3). The pump stage output (pulses of 150 μ J , 30 ns @ 2.1 μ m ) and the DFB-QCL radiation are superimposed in the OP-GaAs crystal. The signal at 4.5 μ m is collected after amplification. Inset, stain-etched cross section of a 450 - μ m -thick OP-GaAs crystal with a 63.8 μ m period.

Fig. 2
Fig. 2

OPA signal gain (at 4.5 μ m only) versus pump average power. Squares, experiment with a 41 - mm -long crystal; circles, experiment with a 32 - mm -long crystal. Solid curves, theoretical fits with SNLO calculation; dotted curves, theoretical fits with nondepleted pump approximation.

Fig. 3
Fig. 3

Top, signal gain versus crystal temperature (circles, experiment; solid curve, theoretical fit). Bottom, signal beam quality measurements with a HgCdTe detector and a 20 μ m slit (fast-axis experiment, squares; slow-axis experiment, dots; solid curves, fit).

Metrics