Abstract

We report what we believe to be a novel experimental heterodyne technique for the spectral analysis of continuous optical wave sources. The achieved resolution is as low as the kilohertz level, with a dynamic range in excess of 90 dB. The technique is based on a heterodyne detection between the source under test (SUT) and a Brillouin fiber laser generated by this SUT. Contrary to standard self-heterodyne techniques only a few tens of meters of optical fiber is required without the need of any optical modulators. This spectrometer has been used to characterize a distributed-feedback laser diode and a Brillouin fiber laser.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
    [CrossRef]
  2. B. Szafraniec, J. Y. Law, and D. M. Baney, Opt. Lett. 27, 1896 (2002).
    [CrossRef]
  3. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 509 (1982).
    [CrossRef] [PubMed]
  4. J. C. Yong, L. Thévenaz, and B. Y. Kim, J. Lightwave Technol. 21, 546 (2003).
    [CrossRef]
  5. A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 18, 556 (2001).
    [CrossRef]
  6. S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, Opt. Lett. 33, 1681 (2007).
    [CrossRef]
  7. J. Geng and S. Jiang, Opt. Lett. , 32, 11 (2007).
    [CrossRef]
  8. G. Y. Lyu, S. S. Lee, D. H. Lee, C. S. Park, M. H. Kang, and K. Cho, Opt. Lett. 23, 873 (1998).
    [CrossRef]
  9. J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
    [CrossRef]
  10. C. Heras, J. Subías, J. Pelayo, and F. Villuendas, Opt. Express 15, 3708 (2007).
    [CrossRef] [PubMed]
  11. M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
    [CrossRef]
  12. P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
    [CrossRef]
  13. The primary reason of this insulation is to avoid instabilities and laser mode hops. However, as there is no active control of the spectrometer temperature, it is also useful to prevent the frequency drifts of the Stokes wave associated with any temperature drifts (around 1 MHz/K). In fact, the zero frequency of the spectra we observe can be automatically centered to the Stokes frequency, thus rendering the device unaffected by long term slow drifts, provided they are sufficiently slow. With a 1 MHz/K frequency drift and a 1 kHz resolution, the temperature drift must be less than 1 mK during the measurement time.

2007

2005

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

2003

2002

2001

1998

1995

P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
[CrossRef]

1982

1980

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Ahmad, H.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Alouini, M.

Baili, G.

Baney, D. M.

Biglary, M.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Cho, K.

Chodorow, M.

Debut, A.

Dolfi, D.

Geng, J.

Harun, S. W.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Heras, C.

Heras, C. D.

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Huignard, J.-P.

Jiang, S.

Kang, M. H.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Kim, B. Y.

Law, J. Y.

Lee, D. H.

Lee, S. S.

Lyu, G. Y.

Molin, S.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Nicati, P.-A.

P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Park, C. S.

Pelayo, J.

C. Heras, J. Subías, J. Pelayo, and F. Villuendas, Opt. Express 15, 3708 (2007).
[CrossRef] [PubMed]

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Pellejer, E.

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Randoux, S.

Shaw, H. J.

P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
[CrossRef]

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 509 (1982).
[CrossRef] [PubMed]

Shirazi, M. R.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Stokes, L. F.

Subías, J.

Subías Domingo, J. M.

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Szafraniec, B.

Thambiratnam, K.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Thévenaz, L.

Toyama, K.

P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
[CrossRef]

Villuendas, F.

C. Heras, J. Subías, J. Pelayo, and F. Villuendas, Opt. Express 15, 3708 (2007).
[CrossRef] [PubMed]

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

Yong, J. C.

Zemmouri, J.

Electron. Lett.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

J. M. Subías Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005).
[CrossRef]

J. Lightwave Technol.

J. C. Yong, L. Thévenaz, and B. Y. Kim, J. Lightwave Technol. 21, 546 (2003).
[CrossRef]

P.-A. Nicati, K. Toyama, and H. J. Shaw, J. Lightwave Technol. 13, 1445 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Microwave Opt. Technol. Lett.

M. R. Shirazi, S. W. Harun, K. Thambiratnam, M. Biglary, and H. Ahmad, Microwave Opt. Technol. Lett. 49, 2656 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

The primary reason of this insulation is to avoid instabilities and laser mode hops. However, as there is no active control of the spectrometer temperature, it is also useful to prevent the frequency drifts of the Stokes wave associated with any temperature drifts (around 1 MHz/K). In fact, the zero frequency of the spectra we observe can be automatically centered to the Stokes frequency, thus rendering the device unaffected by long term slow drifts, provided they are sufficiently slow. With a 1 MHz/K frequency drift and a 1 kHz resolution, the temperature drift must be less than 1 mK during the measurement time.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of the spectrometer. SUT, source under test. BFL, Brillouin fiber laser. Circ, circulator. PD, 12 GHz bandwidth photodetector. Amp, 30 dB microwave amplifier stage. MSA, microwave spectrum analyzer. The SUT is injected into a BFL. The output of the BFL is then mixed with a fraction of the SUT. Their beat note is analyzed with the MSA. The device is entirely realized with polarization-maintaining (PM) components.

Fig. 2
Fig. 2

(a) Spectrum of a DFB laser diode with 100 kHz MSA resolution over a 20 MHz span. FWHM, 470 kHz. (b) Spectrum of a BFL with 1 kHz MSA resolution, and 1 s sweep time. The dynamic reaches 91 dB with 1.5 kHz FWHM. The inset is a zoom on the BFL spectrum. For all axes, the zero frequency corresponds to ( 10880 ± 5 )   MHz , the Brillouin Stokes shift.

Fig. 3
Fig. 3

Spectra with 1.0 MHz MSA resolution. The power at the input of the spectrometer is adjusted to 36 mW for both sources. The inset shows the spectra of the DFB fed with two different commercial laser current supplies. One of them clearly shows very poor noise quality. The zero frequency corresponds to the Brillouin Stokes shift.

Metrics