Abstract

An efficient Ho:LuLiF4 laser in-band pumped by a cladding-pumped Tm-doped silica fiber laser operating at 1937nm is reported. At low-cavity output coupling, the Ho:LuLiF4 laser yielded 5.1W of output at a wavelength of 2066nm for 8.0W of absorbed pump power with a slope efficiency of 70%. At high-cavity output coupling, the lasing wavelength shifted to 2053nm and the laser produced an output power of 5.4W with a slope efficiency of 76%. The beam propagation factor (M2) was measured to be 1.1 at the maximum output power confirming fundamental transverse mode (TEMoo) operation. The influence of resonator design on laser performance is discussed, along with prospects for further power scaling and improvement of the laser efficiency.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Walsh, Laser Phys. 19, 855 (2009).
    [CrossRef]
  2. F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
    [CrossRef]
  3. N. P. Barnes, B. M. Walsh, and E. D. Filer, J. Opt. Soc. Am. B 20, 1212 (2003).
    [CrossRef]
  4. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, Opt. Lett. 31, 462 (2006).
    [CrossRef] [PubMed]
  5. V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
    [CrossRef]
  6. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
    [CrossRef]
  7. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, Opt. Express 14, 10481 (2006).
    [CrossRef] [PubMed]
  8. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).
    [CrossRef]
  9. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
    [CrossRef]
  10. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
    [CrossRef] [PubMed]
  11. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]
  12. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Opt. Express 16, 5807 (2008).
    [CrossRef] [PubMed]

2009 (4)

B. M. Walsh, Laser Phys. 19, 855 (2009).
[CrossRef]

F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (2)

2004 (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).
[CrossRef]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
[CrossRef]

2003 (1)

2002 (1)

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

1988 (1)

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
[CrossRef]

Asai, K.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

Bai, Y.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).
[CrossRef]

N. P. Barnes, B. M. Walsh, and E. D. Filer, J. Opt. Soc. Am. B 20, 1212 (2003).
[CrossRef]

Betterton, J. G.

Chen, S.

Clarkson, W. A.

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
[CrossRef]

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
[CrossRef]

Filer, E. D.

Fukuda, T.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

Gorton, E. K.

Kavaya, M. J.

Kim, J. W.

Mackenzie, J. I.

Modlin, E. A.

Petros, M.

Petzar, P. J.

Risk, W. P.

Sahu, J. K.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Opt. Express 16, 5807 (2008).
[CrossRef] [PubMed]

Shen, D. Y.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Opt. Express 16, 5807 (2008).
[CrossRef] [PubMed]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
[CrossRef]

Shepherd, D. P.

Shimamura, K.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

Singh, U. N.

So, S.

Sudesh, V.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

Terry, J. A. C.

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
[CrossRef]

Tonelli, M.

F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
[CrossRef]

Trieu, B. C.

Walsh, B. M.

B. M. Walsh, Laser Phys. 19, 855 (2009).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).
[CrossRef]

N. P. Barnes, B. M. Walsh, and E. D. Filer, J. Opt. Soc. Am. B 20, 1212 (2003).
[CrossRef]

Yu, J.

Appl. Phys. B (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, Appl. Phys. B 79, 559 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, IEEE J. Quantum Electron. 38, 1102 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

B. M. Walsh, Laser Phys. 19, 855 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, Prog. Quantum Electron. 33, 61 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the Ho:LLF resonator. λ 2 WP, half-wave plate; Pol, polarizer; IC, input-coupler mirror (AR at 1850 2000 nm and HR at 2050 2150 nm ); OC, output-coupler mirror (transmission of 3%, 10%, 20%, or 37% at 2000 2150 nm ).

Fig. 2
Fig. 2

Output power versus absorbed pump power for the Ho:LLF laser operating at 2066 nm using output couplers with transmissions of 3%, 10%, and 20% (open symbols) and at 2053 nm with an output coupler of 37% (closed symbol).

Fig. 3
Fig. 3

Calculated gain coefficient for the π polarization of Ho:LLF for various output coupling mirrors: 3%, 10%, 20%, and 37%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g = α a β ( 1 + Z 1 Z 2 exp ( ( E 0 1 λ ) h c k T ) ) 1 = ln ( R OC T sp 2 ) 2 l ,

Metrics