Abstract

Time-dependent and near-field nanoparticle concentrations are determined by correlating the surface plasmon resonance (SPR) reflectance intensities with the effective refractive index (ERI) of the nanofluid under evaporation. A critical angle measurement for total internal reflection identifies the ERI of the nanofluid at different nanoparticle concentrations. The corresponding SPR reflectance intensities correlate the nanofluidic ERI with the nanoparticle concentrations. Example applications for evaporating nanofluidic droplets containing 47nm Al2O3 particles demonstrate the feasibility of this new imaging tool for measuring time-resolved and full-field nanoparticle concentration profiles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Chem. Rev. 108, 462 (2008).
    [CrossRef] [PubMed]
  2. I. T. Kim and K. D. Kihm, Opt. Lett. 32, 3456 (2007).
    [CrossRef] [PubMed]
  3. R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
    [CrossRef]
  4. M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).
  5. G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
    [CrossRef]
  6. K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).
  7. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
    [CrossRef]
  8. X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
    [CrossRef]
  9. M. Mohammadi, Adv. Colloid Interface Sci. 62, 17 (1995).
    [CrossRef]
  10. K.-E. Peiponen, A. Jaaskelainen, J. Raty, O. Richard, U. Tapper, E. I. Kauppinen, and K. Lumme, Appl. Spectrosc. 54, 878 (2000).
    [CrossRef]
  11. I. T. Kim and K. D. Kihm, Langmuir 25, 1881 (2009).
    [CrossRef]
  12. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  13. G. H. Meeten and A. N. North, Meas. Sci. Technol. 6, 214 (1995).
    [CrossRef]
  14. Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).
  15. J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
    [CrossRef]
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  17. R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
    [CrossRef]
  18. E. Z. Kretschmann, Physik 241, 313 (1971).
    [CrossRef]
  19. T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).
  20. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  21. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 36, 6539 (1997).
    [CrossRef]
  22. S. J. Kline and F. A. McClintock, Appl. Mech. Rev. 75, 3 (1953).
  23. I. T. Kim and K. D. Kihm, Exp. Fluids 41, 905 (2006).
    [CrossRef]
  24. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
    [CrossRef]

2009 (1)

I. T. Kim and K. D. Kihm, Langmuir 25, 1881 (2009).
[CrossRef]

2008 (5)

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).

G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
[CrossRef]

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

2007 (2)

I. T. Kim and K. D. Kihm, Opt. Lett. 32, 3456 (2007).
[CrossRef] [PubMed]

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

2006 (1)

I. T. Kim and K. D. Kihm, Exp. Fluids 41, 905 (2006).
[CrossRef]

2005 (1)

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

2000 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1998 (1)

R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
[CrossRef]

1997 (1)

1995 (2)

G. H. Meeten and A. N. North, Meas. Sci. Technol. 6, 214 (1995).
[CrossRef]

M. Mohammadi, Adv. Colloid Interface Sci. 62, 17 (1995).
[CrossRef]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

1985 (1)

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

1981 (1)

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

1979 (1)

J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
[CrossRef]

1971 (1)

E. Z. Kretschmann, Physik 241, 313 (1971).
[CrossRef]

1953 (1)

S. J. Kline and F. A. McClintock, Appl. Mech. Rev. 75, 3 (1953).

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).

Alexander, K.

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

Bouhelier, A.

G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).

Callcott, T. A.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Capek, I.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Champion, J. V.

J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
[CrossRef]

Choi, S. U. S.

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

Chon, C. H.

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

Critser, J. K.

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

Ferrell, T. L.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

French, R. H.

R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Gershon, P. D.

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

Han, X.

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

Homola, J.

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef] [PubMed]

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Ivanov, T. B.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Ivanova, K. J.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Jaaskelainen, A.

Jones, D. J.

R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
[CrossRef]

Kauppinen, E. I.

Kihm, K. D.

I. T. Kim and K. D. Kihm, Langmuir 25, 1881 (2009).
[CrossRef]

I. T. Kim and K. D. Kihm, Opt. Lett. 32, 3456 (2007).
[CrossRef] [PubMed]

I. T. Kim and K. D. Kihm, Exp. Fluids 41, 905 (2006).
[CrossRef]

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

Killey, A.

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

Kim, I. T.

I. T. Kim and K. D. Kihm, Langmuir 25, 1881 (2009).
[CrossRef]

I. T. Kim and K. D. Kihm, Opt. Lett. 32, 3456 (2007).
[CrossRef] [PubMed]

I. T. Kim and K. D. Kihm, Exp. Fluids 41, 905 (2006).
[CrossRef]

Kline, S. J.

S. J. Kline and F. A. McClintock, Appl. Mech. Rev. 75, 3 (1953).

Kolomenskii, A. A.

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

Kretschmann, E. Z.

E. Z. Kretschmann, Physik 241, 313 (1971).
[CrossRef]

Lee, S. P.

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

Lumme, K.

Ma, H. B.

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

McClintock, F. A.

S. J. Kline and F. A. McClintock, Appl. Mech. Rev. 75, 3 (1953).

Meeten, G.

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

Meeten, G. H.

G. H. Meeten and A. N. North, Meas. Sci. Technol. 6, 214 (1995).
[CrossRef]

J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
[CrossRef]

Mohammadi, M.

M. Mohammadi, Adv. Colloid Interface Sci. 62, 17 (1995).
[CrossRef]

Mullejans, H.

R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
[CrossRef]

North, A. N.

G. H. Meeten and A. N. North, Meas. Sci. Technol. 6, 214 (1995).
[CrossRef]

Peiponen, K.-E.

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Rangelow, I. W.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Raty, J.

Richard, O.

Sarov, Y. E.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Sarova, V. J.

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Schuessler, H. A.

Senior, M.

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
[CrossRef]

Slavik, R.

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

Tapper, U.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

Warmack, R. J.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Widerrecht, G. P.

G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
[CrossRef]

Wilson, C.

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

Wurtz, G. A.

G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Adv. Colloid Interface Sci. (1)

M. Mohammadi, Adv. Colloid Interface Sci. 62, 17 (1995).
[CrossRef]

Am. Sci. (1)

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Appl. Mech. Rev. (1)

S. J. Kline and F. A. McClintock, Appl. Mech. Rev. 75, 3 (1953).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, Appl. Phys. Lett. 87, 153107 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Arch. Hist. Exact Sci. (1)

Y. E. Sarov, I. Capek, T. B. Ivanov, K. J. Ivanova, V. J. Sarova, and I. W. Rangelow, Arch. Hist. Exact Sci. 8, 375 (2008).

Chem. Phys. Lett. (1)

G. P. Widerrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).
[CrossRef]

Chem. Rev. (1)

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef] [PubMed]

Exp. Fluids (1)

I. T. Kim and K. D. Kihm, Exp. Fluids 41, 905 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. H. French, H. Mullejans, and D. J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

K. Alexander, A. Killey, G. Meeten, and M. Senior, J. Chem. Soc. Faraday Trans. 77, 361 (1981).

J. Colloid Interface Sci. (1)

J. V. Champion, G. H. Meeten, and M. Senior, J. Colloid Interface Sci. 72, 471 (1979).
[CrossRef]

Langmuir (1)

I. T. Kim and K. D. Kihm, Langmuir 25, 1881 (2009).
[CrossRef]

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 15, 1 (2008).

Meas. Sci. Technol. (1)

G. H. Meeten and A. N. North, Meas. Sci. Technol. 6, 214 (1995).
[CrossRef]

Microfluid. Nanofluid. (1)

X. Han, H. B. Ma, C. Wilson, and J. K. Critser, Microfluid. Nanofluid. 4, 357 (2008).
[CrossRef]

Opt. Lett. (1)

Physik (1)

E. Z. Kretschmann, Physik 241, 313 (1971).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

Sens. Actuators B (2)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental determination of ERI of nanofluids containing 47 nm Al 2 O 3 nanoparticles by using the TIR technique and the measurement uncertainties for different volume concentrations.

Fig. 2
Fig. 2

(a) Schematic illustration of SPR reflectance imaging and (b) correlation of TIR measured ERI of nanofluids ( 47 nm Al 2 O 3 particles) with normalized SPR reflectance R for different loadings. The vertical error bars represent the measurement uncertainty of the TIR technique associated with the broadening of critical angles, and the horizontal error bars represent the rms of the spatial pixel intensity variations of SPR reflectance images.

Fig. 3
Fig. 3

Full-field and real-time mapping of ERI and volume concentration distributions of an evaporating nanofluid containing 47 nm Al 2 O 3 nanoparticles. The tested nanofluid has an initial nanoparticle concentration of 0.25 vol. % and initial volume of 1.0 μ l , leaving the spot size of 1.6 mm diameter, and is placed on top of Au thin film until the self-assembled dryout is reached. The first column shows progressive SPR reflectance images as the evaporation or self-assembly is progressing, the second column presents schematic drawings illustrating the progress, the third column shows ERI field distributions based on the correlation of Fig. 2, and the fourth column shows the corresponding concentration field distributions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n eff = m 1 + 3 2 m 1 v Im [ S ( 0 ) ] x 3 ,
n eff = m 1 + 3 8 m 1 v x 4 x ( m 2 1 m 2 + 2 ) = m 1 + χ ( m 2 m 1 ) v ,
χ = 3 2 ( m + 1 m 2 + 2 ) ,
n eff = 1.332 + 0.345 ν ( theoretical ) .
n eff = 1.332 + 0.327 ν ( experimental ) .
R = R ( n p , n eff , ε f , d f , λ , θ spr ) ,

Metrics