Abstract

Spatial walk-off can severely increase the threshold of critical phase-matched optical parametric oscillations (OPOs) and distort the output beam quality. With 16-layer KTP stacks for walk-off compensation, noncritical phase-match-like (NCPM-like) and quasi-phase-match-like OPOs with enhanced angular acceptance have been demonstrated based on two different KTP bonding orientations. In the NCPM-like composite, output pulse energy of 49μJ has been achieved at pump energy of 523μJ with pulse duration of 15 ns and repetition rate of 1 KHz. The OPO threshold as low as 254μJ (44.6  MW/cm2) has been achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  2. B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
    [CrossRef]
  3. S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
    [CrossRef]
  4. S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
    [CrossRef]
  5. K. Miyamoto and H. Ito, Opt. Lett. 32, 274 (2007).
    [CrossRef] [PubMed]
  6. P. B. Phua, B. S. Tan, R. F. Wu, K. S. Lai, L. Chia, and E. Lau, Opt. Lett. 31, 489 (2006).
    [CrossRef] [PubMed]
  7. W. Shi and Y. J. Ding, Opt. Lett. 30, 1030 (2005).
    [CrossRef] [PubMed]
  8. J. J. Zondy, M. Abed, and S. Khodja, J. Opt. Soc. Am. B 11, 2368 (1994).
    [CrossRef]
  9. B. J. Perrett, P. D. Mason, and D. A. Orchard, Appl. Opt. 45, 4424 (2006).
    [CrossRef] [PubMed]
  10. J. J. Zondy, D. Kolker, C. Bounia, and D. Lupinski, J. Opt. Soc. Am. B 20, 1695 (2003).
    [CrossRef]
  11. J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
    [CrossRef]
  12. X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
    [CrossRef]
  13. H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
    [CrossRef]
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  15. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, Opt. Lett. 23, 1739 (1998).
    [CrossRef]
  16. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]

2009 (1)

X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
[CrossRef]

2007 (1)

2006 (4)

P. B. Phua, B. S. Tan, R. F. Wu, K. S. Lai, L. Chia, and E. Lau, Opt. Lett. 31, 489 (2006).
[CrossRef] [PubMed]

H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
[CrossRef]

B. J. Perrett, P. D. Mason, and D. A. Orchard, Appl. Opt. 45, 4424 (2006).
[CrossRef] [PubMed]

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

2005 (1)

2004 (3)

S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
[CrossRef]

S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
[CrossRef]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
[CrossRef] [PubMed]

2003 (1)

1998 (1)

1996 (1)

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1989 (1)

Abed, M.

Arie, A.

Becouarn, L.

Bierlein, J. D.

Bounia, C.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chia, L.

Ding, Y. J.

Douard, M.

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

Ertmer, W.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Fejer, M. M.

Friebe, J.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Garashi, A.

Gerard, B.

Haidar, S.

S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
[CrossRef]

S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
[CrossRef]

Harris, J. S.

Isaenko, L.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Ito, H.

K. Miyamoto and H. Ito, Opt. Lett. 32, 274 (2007).
[CrossRef] [PubMed]

S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
[CrossRef]

S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Khodja, S.

Kolker, D.

Kuo, P. S.

Lai, K. S.

Lallier, E.

Lau, E.

Lee, H.

H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
[CrossRef]

Lee, H. -C.

X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
[CrossRef]

Levi, O.

Lupinski, D.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Mason, P. D.

Meissner, H.

X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
[CrossRef]

Meissner, H. E.

H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
[CrossRef]

Meissner, O. R.

H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
[CrossRef]

Miyamoto, K.

K. Miyamoto and H. Ito, Opt. Lett. 32, 274 (2007).
[CrossRef] [PubMed]

S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
[CrossRef]

S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
[CrossRef]

Moldenhauer, K.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Mu, X.

X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
[CrossRef]

Orchard, D. A.

Perrett, B. J.

Phua, P. B.

Pinguet, T. J.

Rambaldi, P.

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

Rasel, E. M.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Rosenman, G.

Shi, W.

Skliar, A.

Tan, B. S.

Vanherzeele, H.

Vezin, B.

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

Vodopyanov, K. L.

Wolf, J. P.

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

Wu, R. F.

Yelisseyev, A.

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Zondy, J. J.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Vezin, M. Douard, P. Rambaldi, and J. P. Wolf, Appl. Phys. B 63, 199 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

S. Haidar, K. Miyamoto, and H. Ito, J. Phys. D 37, 3347 (2004).
[CrossRef]

Opt. Commun. (2)

S. Haidar, K. Miyamoto, and H. Ito, Opt. Commun. 241, 173 (2004).
[CrossRef]

J. Friebe, K. Moldenhauer, E. M. Rasel, W. Ertmer, L. Isaenko, A. Yelisseyev, and J. J. Zondy, Opt. Commun. 261, 300 (2006).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (2)

X. Mu, H.-C. Lee, and H. Meissner, Proc. SPIE 7197, 71970G (2009).
[CrossRef]

H. Lee, H. E. Meissner, and O. R. Meissner, Proc. SPIE 6216, 62160O (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustrations of (a) KTP alignment in Sample 1 for QNCPM OPO; (b) KTP alignment for QPM-like OPO with grating period of two KTP layers; (c) KTP alignment used in Sample 2, in which QPM period is formed by three layers of KTP with two adjacent layers that have the same signs of d e f f and one layer that has the opposite sign of d e f f . The dark gray colored end layer denotes a spare layer in the QPM OPO process (but it is needed for WOC). The solid and dashed arrows on each layer denote the z- and y-axis directions, respectively. The positive and negative signs represent the relative signs of d e f f . Ordinary polarization is along the y axis.

Fig. 2
Fig. 2

OPO spectrum measured in (a) Sample 2 and (b) Sample 1 (red curves). The blue curves are the theoretical gain curves for Sample 1 and 2 with the KTP θ angles of 50.69°. In the calculation, 15 layers are used for Sample 2 with a QPM-like period of three layers. The gray curve in Fig. 2a is the theoretical curve for the 16-layer QPM-like OPO with a period of two layers.

Fig. 3
Fig. 3

Output pulse energy as a function of pump pulse energy measured in Sample 1 (solid circles) and in Sample 2 (hollow circles) with 80% OC. The inserted figure is the output beam profile for the QNCPM OPO measured by a pyroelectric camera.

Fig. 4
Fig. 4

Normalized OPO intensity as a function of internal polar incident angle changes measure in Sample 1 (solid circles) and Sample 2 (hollow circles). Innermost and outermost curves are theoretical phase-matching curves for the DFG process in a 32-mm-long bulk KTP and WOC composite with 2 mm layer thickness, respectively.

Metrics