Abstract

We observed dips in transmission spectra of uniformly twisted pure-silica microstructured fibers. The spectral positions of the dips and their insensitivity to the surrounding medium are consistent with Bragg diffraction from the helical structure. The reproducibility of the variation of the dip wavelength with temperature up to 1000°C makes the chiral diffraction grating suitable for high-temperature sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. L. Dong and W. F. Liu, Appl. Opt. 36, 8222 (1997).
    [CrossRef]
  3. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
    [CrossRef] [PubMed]
  4. O. V. Ivanov, Opt. Lett. 30, 3290 (2005).
    [CrossRef]
  5. V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, J. Opt. Soc. Am. B 24, A48 (2007).
    [CrossRef]
  6. O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
    [CrossRef]
  7. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, Opt. Lett. 31, 1794 (2006).
    [CrossRef] [PubMed]
  8. M. Fokine, Opt. Lett. 29, 1185 (2004).
    [CrossRef] [PubMed]
  9. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 2455 (2008).
    [CrossRef] [PubMed]
  10. V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (2)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef] [PubMed]

M. Fokine, Opt. Lett. 29, 1185 (2004).
[CrossRef] [PubMed]

2002 (1)

O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
[CrossRef]

1997 (1)

1989 (1)

Butov, O. V.

O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
[CrossRef]

Chao, N.

Choi, E. S.

Choi, H. Y.

Churikov, V. M.

Coviello, G.

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

Dong, L.

Draper, C. W.

Finazzi, V.

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

Fokine, M.

Genack, A. Z.

Glenn, W. H.

Golant, K. M.

O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
[CrossRef]

Ivanov, O. V.

Kopp, V. I.

Lee, B. H.

Lee, J.

Liu, W. F.

Meltz, G.

Morey, W. W.

Neugroschl, D.

Nikolin, I. V.

O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
[CrossRef]

Paek, U.-C.

Park, K. S.

Park, S. J.

Pruneri, V.

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

Ruffin, P.

Singer, J.

Villatoro, J.

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

Yin, S.

Yong, Z.

Zhan, C.

Zhang, G.

Appl. Opt. (1)

Electron. Lett. (1)

O. V. Butov, K. M. Golant, and I. V. Nikolin, Electron. Lett. 38, 523 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef] [PubMed]

Other (1)

V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, in Optics and Photonics for Advanced Energy Technology, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ThC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of an all-silica MSF from which the gratings are fabricated. The fiber has a diameter of 125 μ m , the air hole diameter is 2.4 μ m , and the distance between holes is 5.8 μ m . (b) Geometry of the twisted MSF fiber (only the six inner air holes are shown). The triangle on the top shows one of the tubes “unfolded” to a plane over a length scale of P (not drawn to the scale of the main figure.) The hypotenuse is the length of an unwound hole within the twist pitch P. (c) Three inner sets of air holes at the vertices of hexagons centered in the fiber. The side of the smallest hexagon is a.

Fig. 2
Fig. 2

Spectra obtained for two chiral gratings, one with D = 93 μ m and P = 360 μ m (sample 1) and the other with D = 105 μ m and P = 486 μ m (sample 2.) The inset shows the dip of the same grating in air (black) and in index-matching liquid (gray). (A third sample was used for the liquid experiment because those shown in the main figure were sealed in silica tubes.)

Fig. 3
Fig. 3

Wavelength of the transmission dip of the CDG versus temperature as the temperature is cycled over a period of 24 h . Inset, deviations of readings of the CDG from thermocouple readings during the cooling process.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β core β clad = 2 π m Λ ,
2 d sin θ = m λ n eff ,
sin θ = C i P 2 + C i 2 ,
λ m = P n eff 3 m C i 2 ( P 2 + C i 2 ) .

Metrics