Abstract

We present a method that allows storing multiple encrypted data using digital holography and a joint transform correlator architecture with a controllable angle reference wave. In this method, the information is multiplexed by using a key and a different reference wave angle for each object. In the recovering process, the use of different reference wave angles prevents noise produced by the nonrecovered objects from being superimposed on the recovered object; moreover, the position of the recovered object in the exit plane can be fully controlled. We present the theoretical analysis and the experimental results that show the potential and applicability of the method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Matoba and B. Javidi, Appl. Opt. 38, 7288 (1999).
    [CrossRef]
  2. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, Appl. Opt. 42, 1508 (2003).
    [CrossRef] [PubMed]
  3. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, Appl. Opt. 47, 5903 (2008).
    [CrossRef]
  4. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
    [CrossRef]
  5. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
    [CrossRef]
  6. P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef] [PubMed]
  7. G. Unnikrishnan, J. Joseph, and K. Singh, Appl. Opt. 37, 8181 (1998).
    [CrossRef]

2009 (2)

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
[CrossRef]

2008 (1)

2003 (1)

1999 (1)

1998 (1)

1995 (1)

Amaya, D.

Barrera, J. F.

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
[CrossRef]

Bolognini, N.

Henao, R.

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
[CrossRef]

Javidi, B.

Joseph, J.

Matoba, O.

Mikan, S.

Morimoto, Y.

Nomura, T.

Refregier, P.

Rueda, E.

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
[CrossRef]

Singh, K.

Tebaldi, M.

Torroba, R.

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Eng. 48, 027006 (2009).
[CrossRef]

E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, Opt. Commun. 282, 3243 (2009).
[CrossRef]

D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, Appl. Opt. 47, 5903 (2008).
[CrossRef]

Unnikrishnan, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: B, beam splitter; M, mirror; O, input plane; Object, object to be encrypted; Diffuser, random phase mask; Key, random phase mask encrypting key; L, lens; f, focal length of L; K, CCD camera plane; cos ψ and cos θ are the director cosines of the reference wave.

Fig. 2
Fig. 2

Experimental results of a recovered number “3” when (a) 0, (b) 3, (c) 6, and (d) 12 objects where multiplexed with conventional techniques.

Fig. 3
Fig. 3

Experimental results of a recovered number 3 when 12 objects where multiplexed with (a) conventional techniques, (b) our proposal.

Fig. 4
Fig. 4

Recovered objects from the image of 24 experimentally multiplexed images.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

u 0 ( x 0 , y 0 ) = [ f ( x 0 , y 0 ) α ( x 0 , y 0 ) ] δ ( x 0 ( a ) , y 0 ) + h ( x 0 , y 0 ) δ ( x 0 a , y 0 ) ,
u 1 ( x 1 , y 1 ) = 1 ( λ f 1 ) 2 [ F ( x 1 λ f 1 , y 1 λ f 1 ) A ( x 1 λ f 1 , y 1 λ f 1 ) ] × H * ( x 1 λ f 1 , y 1 λ f 1 ) exp ( i 2 π ( 2 a ) x 1 λ f 1 ) ,
k 1 ( x 1 , y 1 ) = ( 1 i λ f 1 ) H ( x 1 λ f 1 , y 1 λ f 1 ) exp [ i 2 π ( λ f 1 γ + a ) x 1 λ f 1 ] exp [ i 2 π ( λ f 1 ϕ ) y 1 λ f 1 ] .
u 2 ( x 2 , y 2 ) = 1 i ( λ f 1 ) 3 [ f ( x 2 , y 2 ) α ( x 2 , y 2 ) ] δ [ x 2 ( λ f 1 γ a ) , y 2 ( λ f 1 ϕ ) ] .
E ( x 1 , y 1 ) = n = 1 N { G n ( x 1 λ f 1 , y 1 λ f 1 ) H n * ( x 1 λ f 1 , y 1 λ f 1 ) } exp ( i 2 π ( 2 a ) x 1 λ f 1 ) ,
k n ( x 1 , y 1 ) = H n ( x 1 λ f 1 , y 1 λ f 1 ) exp [ i 2 π ( λ f 1 γ + a ) x 1 λ f 1 ] exp [ i 2 π ( λ f 1 ϕ ) y 1 λ f 1 ] .
u 2 ( x 2 , y 2 ) = g j ( x 2 , y 2 ) [ h j * ( x 2 , y 2 ) h j ( x 2 , y 2 ) ] δ [ x 2 ( λ f 1 γ a ) , y 2 ( λ f 1 ϕ ) ] + n = 1 n j N { g n ( x 2 , y 2 ) [ h n * ( x 2 , y 2 ) h j ( x 2 , y 2 ) ] } δ [ x 2 ( λ f 1 γ a ) , y 2 ( λ f 1 ϕ ) ] .
u 2 ( x 2 , y 2 ) = [ g j ( x 2 , y 2 ) + n = 1 n j N s n ( x 2 , y 2 ) ] δ [ x 2 ( λ f 1 γ a ) , y 2 ( λ f 1 ϕ ) ] ,
E ( x 1 , y 1 ) = n = 1 N { G n ( x 1 λ f 1 , y 1 λ f 1 ) H n * ( x 1 λ f 1 , y 1 λ f 1 ) exp [ i 2 π ( λ f 1 γ n a ) x 1 λ f 1 ] exp [ i 2 π ( λ f 1 ϕ n ) y 1 λ f 1 ] } ,
k n ( x 1 , y 1 ) = H n ( x 1 λ f 1 , y 1 λ f 1 ) exp [ i 2 π ( λ f 1 γ n + a ) x 1 λ f 1 ] exp [ i 2 π ( λ f 1 ϕ n ) y 1 λ f 1 ] .
u 2 ( x 2 , y 2 ) = g j ( x 2 , y 2 ) δ ( x 2 , y 2 ) + { n = 1 n j N s n ( x 2 , y 2 ) δ [ x 2 λ f 1 ( γ n γ j ) , y 2 λ f 1 ( ϕ n ϕ j ) ] } .

Metrics