Abstract

The integration of optical components into microfluidic systems has the potential to reduce the amount of bulky external devices and thus reduce the cost. However, one of the challenges of this concept is the accurate alignment of the optical path among multiple optical components inside a chip. We propose a tunable micro-optofluidic prism based on the liquid-core liquid-cladding structure formed in a sector-shape chamber. The optical interface of the prism is maintained in a straight line shape by distributing a row of pressure barriers in the chamber. By adjusting the flow rate ratio between core and cladding streams, the apex angle of the prism can be tuned accordingly. As a consequence, the deviation angle of the light beam refracted by the prism can be changed continuously. This tunability of our optofluidic prism can be utilized for the alignment of the optical path inside a chip or for the development of optical switches.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lin, L. Jiang, H. Xiao, Y.-H. Chai, S.-J. Chen, and H.-L. Tsai, Opt. Lett. 34, 2408 (2009).
    [CrossRef] [PubMed]
  2. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  3. D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
    [CrossRef] [PubMed]
  4. D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
    [CrossRef]
  5. S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
    [CrossRef] [PubMed]
  6. Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
    [CrossRef]
  7. C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
    [CrossRef] [PubMed]
  8. C. L. Song, N. T. Nguyen, A. K. Asundi, and C. L. N. Low, Opt. Lett. 34, 3622 (2009).
    [CrossRef] [PubMed]
  9. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
    [CrossRef] [PubMed]
  10. N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
    [CrossRef]

2009 (4)

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

C.-H. Lin, L. Jiang, H. Xiao, Y.-H. Chai, S.-J. Chen, and H.-L. Tsai, Opt. Lett. 34, 2408 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, A. K. Asundi, and C. L. N. Low, Opt. Lett. 34, 3622 (2009).
[CrossRef] [PubMed]

2008 (2)

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

2007 (1)

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

2005 (1)

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

2004 (1)

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

1984 (1)

Asundi, A. K.

Chai, Y.-H.

Chen, S.-J.

Cheng, T. H.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Chin, L. K.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Conroy, R. S.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Fork, R. L.

Garsteki, P.

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Goh, J. H.

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

Gordon, J. P.

Huang, H. J.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Huang, T.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Jiang, L.

Juluri, B. K.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Kong, T. F.

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

Lapsley, M. I.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Li, X. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Lin, C.-H.

Lin, S.-C. S.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Liu, A. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Low, C. L. N.

C. L. Song, N. T. Nguyen, A. K. Asundi, and C. L. N. Low, Opt. Lett. 34, 3622 (2009).
[CrossRef] [PubMed]

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

Mao, X.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Martinez, O. E.

Mayers, B. T.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Nguyen, N. T.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

C. L. Song, N. T. Nguyen, A. K. Asundi, and C. L. N. Low, Opt. Lett. 34, 3622 (2009).
[CrossRef] [PubMed]

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Prentiss, M. G.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

Seow, Y. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Shi, J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

Song, C. L.

Stan, C. A.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Tan, S. H.

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Tsai, H.-L.

Vezenov, D. V.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

Whitesides, G. M.

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Xiao, H.

Zhou, X. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, Appl. Phys. Lett. 87, 181105 (2005).
[CrossRef]

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

N. T. Nguyen, T. F. Kong, J. H. Goh, and C. L. N. Low, J. Micromech. Microeng. 17, 2169 (2007).
[CrossRef]

Lab Chip (3)

C. L. Song, N. T. Nguyen, S. H. Tan, and A. K. Asundi, Lab Chip 9, 1178 (2009).
[CrossRef] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. Huang, Lab Chip 9, 2050 (2009).
[CrossRef] [PubMed]

S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, Lab Chip 8, 395 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

D. B. Wolfe, R. S. Conroy, P. Garsteki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, Proc. Natl. Acad. Sci. USA 101, 12434 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic configuration of the optofluidic prism. The core and cladding streams are driven by syringe pumps into a sector-shape chamber. The arc-shape distributed pillars work as a pressure barrier to make the interface between streams extend as a straight line. An optical fiber is inserted to guide the laser beam into the device. The divergence of the emitting light beam is reduced by a built-in aperture. The refracted light beam is traced by the ray-visualization chamber locating beside the prism chamber.

Fig. 2
Fig. 2

Relationship between the apex angle of the prism and the flow rate ratio between core and cladding streams. The apex angle of the prism can be tuned by adjusting the flow rate ratio.

Fig. 3
Fig. 3

Relationship between the deviation angle of the light beam refracted by the prism and the flow rate ratio between core and cladding streams. The blue lines in the insets depict the boundaries of refracted light beams. By adjusting the flow rate ratio, the refracted light beam can be changed in a scanning mode ( n 1 = 1.536 , n 0 = 1.412 at the wavelength of λ = 532 nm ) .

Fig. 4
Fig. 4

Deviation angle of the refracted light beam as a function of the refractive index of the core liquid and the flow rate ratio between core and cladding streams, provided the light beam is horizontally incident on the prism. It is assumed that the refractive index of the surrounding medium is 1.412, which matches the PDMS.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ = 90 ° × φ φ + 2 β ,
ζ = arcsin [ n 1 n 0 sin ( θ α ) ] θ 2 ,
α = arcsin [ n 0 n 1 sin ( θ 2 ) ] .
ζ = arcsin [ n 1 n 0 sin ( 90 ° × φ φ + 2 β α ) ] 45 ° × φ φ + 2 β ,

Metrics