Abstract

In this Letter, we present a method of reducing the spectral width of guided-mode resonance (GMR) in air-bridged resonant grating-waveguide structures to enhance the Q factor. The posttreatment of adding a dielectric film to the bottom of the membrane to manipulate the resonance behavior is practicable. The introduced underlayer is shown to be capable of effectively reducing the coupling and enhancing the resonant Q factor. The proposed method provides an effective means of adjusting the resonance property without varying the original GMR structure. The results also imply that TM resonance is more feasible for achieving narrow resonance and potentially in sensing applications, because it has higher sensitivity than TE resonance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription