Abstract

In this Letter, we present a method of reducing the spectral width of guided-mode resonance (GMR) in air-bridged resonant grating-waveguide structures to enhance the Q factor. The posttreatment of adding a dielectric film to the bottom of the membrane to manipulate the resonance behavior is practicable. The introduced underlayer is shown to be capable of effectively reducing the coupling and enhancing the resonant Q factor. The proposed method provides an effective means of adjusting the resonance property without varying the original GMR structure. The results also imply that TM resonance is more feasible for achieving narrow resonance and potentially in sensing applications, because it has higher sensitivity than TE resonance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
    [CrossRef]
  2. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  3. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, J. Opt. Soc. Am. A 17, 1221 (2000).
    [CrossRef]
  4. R. Magnusson and Y. Ding, IEEE Photon. Technol. Lett. 18, 1479 (2006).
    [CrossRef]
  5. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
    [CrossRef] [PubMed]
  6. T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, Opt. Express 13, 4645 (2005).
    [CrossRef] [PubMed]
  7. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, Appl. Opt. 43, 1683 (2004).
    [CrossRef] [PubMed]
  8. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  9. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
    [CrossRef]
  10. S. M. Norton, T. Erdogan, and G. M. Morris, J. Opt. Soc. Am. A 14, 629 (1997).
    [CrossRef]
  11. S. M. Norton, G. M. Morris, and T. Erdogan, J. Opt. Soc. Am. A 15, 464 (1998).
    [CrossRef]
  12. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
    [CrossRef] [PubMed]
  13. W. Liu, Z. Lai, H. Guo, and Y. Liu, Opt. Lett. 35, 865 (2010).
    [CrossRef] [PubMed]
  14. X. Fu, K. Yi, J. Shao, and Z. Fan, Opt. Lett. 34, 124 (2009).
    [CrossRef] [PubMed]
  15. W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
    [CrossRef]
  16. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112(2002).
    [CrossRef]
  17. C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
    [CrossRef]

2010 (1)

2009 (1)

2006 (2)

R. Magnusson and Y. Ding, IEEE Photon. Technol. Lett. 18, 1479 (2006).
[CrossRef]

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (2)

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112(2002).
[CrossRef]

2000 (1)

1998 (2)

S. M. Norton, G. M. Morris, and T. Erdogan, J. Opt. Soc. Am. A 15, 464 (1998).
[CrossRef]

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

1997 (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

S. M. Norton, T. Erdogan, and G. M. Morris, J. Opt. Soc. Am. A 14, 629 (1997).
[CrossRef]

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Bendickson, J. M.

Brundrett, D. L.

Chang, J. Y.

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

Ding, Y.

R. Magnusson and Y. Ding, IEEE Photon. Technol. Lett. 18, 1479 (2006).
[CrossRef]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef] [PubMed]

Erdogan, T.

Fan, S.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112(2002).
[CrossRef]

Fan, Z.

Friesem, A. A.

Fu, X.

Gaylord, T. K.

Glytsis, E. N.

Guo, H.

Herzig, H. P.

Hierle, R.

Hsu, C. L.

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112(2002).
[CrossRef]

Katchalski, T.

Lai, Z.

Lee, Y. C.

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

Levy-Yurista, G.

Liu, W.

Liu, Y.

Liu, Y. C.

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

Magnusson, R.

R. Magnusson and Y. Ding, IEEE Photon. Technol. Lett. 18, 1479 (2006).
[CrossRef]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef] [PubMed]

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Maldonado, T. A.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Martin, G.

Morris, G. M.

Niederer, G.

Norton, S. M.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Schnieper, M.

Shamir, J.

Shao, J.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Shin, D.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Shu, W.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

Solgaard, O.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

Thiele, H.

Thurman, S. T.

Tibuleac, S.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Wu, M. L.

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

Yanik, M. F.

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

Yi, K.

Zschokke, C.

Zyss, J.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Magnusson and Y. Ding, IEEE Photon. Technol. Lett. 18, 1479 (2006).
[CrossRef]

C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, and J. Y. Chang, IEEE Photon. Technol. Lett. 18, 2572 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112(2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic drawing of the proposed resonant grating-waveguide structure. (b) Illustration of the profile distribution of the fundamental waveguide mode within the air-bridged grating-waveguide structure without introducing an underlayer. (c) Profile distribution of the fundamental waveguide mode when a dielectric thin film is added to the bottom of the resonant structure as the underlayer.

Fig. 2
Fig. 2

Measurement results of transmittance of the fabricated air-bridged resonant grating-waveguide structure under collimated TE normal incidence. The results are with respect to: (a) without underlayer and with thicknesses of SiO 2 underlayer of (b) 240, (c) 550, and (d) 750 nm .

Fig. 3
Fig. 3

Measurement results of transmittance of the fabricated air-bridged resonant grating-waveguide structure under collimated TM normal incidence. The results are with respect to: (a) without underlayer and with thicknesses of SiO 2 underlayer of (b) 240, (c) 550, and (d) 750 nm .

Fig. 4
Fig. 4

Summarized results of (a) resonance location and linewidth, and (b) resonance Q factors corresponding to the SiO 2 thickness obtained from the measurement results shown in Figs. 2, 3.

Metrics