Abstract

We theoretically demonstrate that, for a given diameter of the core-pumped metal–dielectric nanowire, there is an optimum thickness of the metallic cladding that provides the maximum propagation length of the lowest-order surface plasmon polariton (SPP) modes. If the nanowire is fabricated with the optimum cladding thickness, the lowest pumping power is required to fully compensate for the SPP propagation losses. We also show that a strong confinement of SPPs within the nanowire can be achieved, but at the expense of either high optical gains or large nanowire diameters. For example, a gain of 565cm1 would suffice to make up for the decay of SPPs in a 250-nm-thick silver–GaAs nanowire; the confinement of optical power within such nanowires exceeds 90%, which makes them ideal interconnects for nanophotonic circuitry.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  3. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, Opt. Express 16, 1385 (2008).
    [CrossRef] [PubMed]
  4. M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004).
    [CrossRef] [PubMed]
  5. S. A. Maier, Opt. Commun. 258, 295 (2006).
    [CrossRef]
  6. V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008).
    [CrossRef]
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  8. U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  9. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  10. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]
  12. W. L. Barnes, J. Opt. A 8, S87 (2006).
    [CrossRef]
  13. S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992).
    [CrossRef]
  14. S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
    [CrossRef]
  15. P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
    [CrossRef]

2009 (1)

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

2008 (2)

2006 (2)

S. A. Maier, Opt. Commun. 258, 295 (2006).
[CrossRef]

W. L. Barnes, J. Opt. A 8, S87 (2006).
[CrossRef]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2001 (1)

U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).
[CrossRef]

1997 (1)

1994 (1)

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

1992 (1)

S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992).
[CrossRef]

1981 (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Adegoke, J. A.

Al-Bader, S. J.

S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992).
[CrossRef]

Bahoura, M.

Barnes, W. L.

W. L. Barnes, J. Opt. A 8, S87 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Coldren, L. A.

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

Corzine, S. W.

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Fainman, Y.

Gossard, A. C.

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

Hu, S. Y.

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

Imtaar, M.

S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992).
[CrossRef]

Klein, B.

V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008).
[CrossRef]

Kobayashi, T.

Krishnamurthy, V.

V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

Maier, S. A.

S. A. Maier, Opt. Commun. 258, 295 (2006).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mayy, M.

Morimoto, A.

Nezhad, M. P.

Noginov, M. A.

Podolskiy, V. A.

Reynolds, K.

Ritzo, B. A.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Sarid, D.

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Schröter, U.

U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Su, W.

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Takahara, J.

Taki, H.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Tetz, K.

Wang, R.

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Xu, X.

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Yamagishi, S.

Young, D. B.

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

Zhang, F.

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Zhao, P.

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Zhu, G.

IEEE J. Quantum Electron. (1)

V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, J. Appl. Phys. 76, 3932 (1994).
[CrossRef]

J. Lightwave Technol. (1)

S. J. Al-Bader and M. Imtaar, J. Lightwave Technol. 10, 865 (1992).
[CrossRef]

J. Opt. A (1)

W. L. Barnes, J. Opt. A 8, S87 (2006).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. A. Maier, Opt. Commun. 258, 295 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

U. Schröter and A. Dereux, Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Physica E (1)

P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, Physica E 41, 387 (2009).
[CrossRef]

Other (3)

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Dispersion of fundamental SPP mode (blue curves) and power ratio (red curve) for Ag–GaAs nanowire in the absence of gain and losses: R 1 = 70 nm , R 2 = 100 nm , ε 1 = 12.35 + i δ 1 , ε 2 = ε [ 1 ω p 2 / ( ω 2 + i ω δ 2 ) ] , ε = 9.6 , ω p = 3.76 eV , and δ 1 = δ 2 = 0 . Opened circles correspond to δ 1 = 0.2 and δ 2 = 13 meV . (b) Amplitude of Poynting vector at points A, B, and C on the dispersion branch.

Fig. 2
Fig. 2

(a), (b) Variation of optical power, P dissipated in Ag–GaAs nanowire and the SPP propagation length, L SPP with relative cladding thickness q = 1 R 1 / R 2 for γ < γ c 1207 cm 1 and ω = 0.35 ω p . Other parameters are the same as in Fig. 1.

Fig. 3
Fig. 3

(a) Critical gain for different nanowire radii. (b) Minimal critical gain, γ 0 and optimal relative cladding thickness, q 0 . (c) Coupling factor, ξ, corresponding to the nanowire with optimal q 0 in (b); ω = 0.35 ω p . Other parameters are the same as in Fig. 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε 1 α 2 I 1 ( α 1 R 1 ) [ α 2 ε 3 K 1 ( α 3 R 2 ) M 00 + α 3 ε 2 K 0 ( α 3 R 2 ) M 10 ] = ε 2 α 1 I 0 ( α 1 R 1 ) [ α 2 ε 3 K 1 ( α 3 R 2 ) M 01 + α 3 ε 2 K 0 ( α 3 R 2 ) M 11 ] ,
M m n = I m ( α 2 R 2 ) K n ( α 2 R 1 ) ( 1 ) m + n I n ( α 2 R 1 ) K m ( α 2 R 2 ) .
P j = 1 , 2 , 3 Im ε j R j 1 R j | E j ( ρ ) | 2 ρ d ρ ,

Metrics